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Executive Summary 

This document details the results of a three year study to assess the feasibility of using geospatial 

technologies to derive inputs for the Wildland Fire Dynamics Simulator (WFDS).  This study was 

conducted as part of a grant (award #60NANB5D1204) from the National Institute of Standards 

and Technology (NIST) to the Coeur d’Alene Tribe.  This grant was part of the NIST Fire Grants 

program.  Specifically, this project focused on extracting the three-dimensional structure of man 

made and natural features from Light Detection and Ranging (LiDAR) data and multi-spectral 

imagery.  A GIS based tool used to automate these feature extractions was also developed as part 

of this grant.  The extraction of fire barrier features such as roads and parking lots from LiDAR 

and multi-spectral imagery using proprietary software were also assessed as part of the work 

conducting for this grant.  Finally, this project resulted in the development of a GIS based tool to 

facilitate the transfer of WFDS inputs stored in GIS data sets to formats suitable to be run by 

WFDS. 
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Section 1.0 Introduction 

This paper details work conducted, products produced and research results of a three year study 

conducted by the Coeur d’Alene Tribe and McNamara Consulting, Inc.  This study was 

conducted through a three year grant (award #60NANB5D1204) to the Coeur d’Alene Tribe 

from the National Institute of Standards and Technology (NIST).  The purpose of this study was 

to assess the feasibility of using geospatial technologies for deriving inputs into the NIST 

Building and Fire Research Laboratory’s (BFRL) Wildland Fire Dynamics Simulator (WFDS).  

This assessment had five basic elements:   

1. Provision of basic WFDS data inputs from already existing Geographic Information 

System (GIS) data for initial WFDS testing purposes. 

2. Development of more extensive data sets across the Coeur d’Alene Tribe Reservation for 

more detailed testing of WFDS. 

3. Research into various automated and semi-automated methods of deriving more 

complicated WFDS inputs from remotely sensed data and development of tools and 

automations to facilitate the implementation of these methods. 

4. Development of prototype applications to transfer GIS data to WFDS input files. 

5. Outreach to the geospatial and fire communities portraying results of this study.         

The Coeur d’Alene Tribe GIS Program has a rich collection of geospatial data consisting of high 

resolution imagery, extensive GIS data sets portraying features across the Reservation and a state 

of the art GIS used to maintain, process, analyze and disseminate these data.  Initial assessments 

began with providing basic topography and roads data to the BFRL and determination of methods 

to transfer this GIS data to WFDS input files.  Through an initial analysis of WFDS requirements, 

WFDS inputs with potential for automated or semi-automated extraction from remotely sensed 

data were identified.  It was determined that three features required some form of automation to 

aid in delineation and or extraction from remotely sensed data: 

1. Building footprints with associated height data.  

2. Tree stem locations with associated attributes of tree height, crown radius, crown base 

height and crown bulk density. 

3. Fire barrier locations such as roads, parking lots and dirt patches. 

Detailed below are the results of these assessments focusing on the examination and development 

of techniques to extract building, tree and fire barrier information from remotely sensed data.  

Early work on the project focused on the formulation of research directions appropriate for these 

types of extractions in the Wildland-Urban Interface (WUI).  Feature extraction methodologies 

were also determined based on available data and tools as described below.  It was determined 

that readily available tools could be used to extract item 3 above, but that adequate tools for the 

extractions of items 1 and 2 did not exist and custom development of tools was required.  The 

specific algorithms implemented are described in sections 2 and 3 below with the functionality of 

the developed tools described in Appendix A. 

There were a number of required WFDS inputs that were derived through previous work 

conducted by the Coeur d’Alene Tribe and these are briefly described in this section.  In addition, 

a prototype application to transfer GIS data to a format suitable for WFDS is briefly described in 

section 5.0 with recommendations for the future use of geospatial technologies in regards to 

WFDS contained in section 6.0.  Finally, Appendix A details a list of presentations and outreach 

meetings where work related to this project was described to interested parties.  
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1.1 Motivation 

Destructive WUI fires have resulted in policy shifts in the United States, which put more 

emphasis on the WUI (Stewart et al., 2007
1
), with both the National Fire Plan (NFP) and the 

Healthy Forest Restoration Act (HFRA) providing focus on WUI mitigation (Stewart et. al., 

2007
2
).  This emphasis on the WUI has resulted in the need to map the WUI using GIS with a 

proliferation of these maps being observed (Stewart, et. al., 2007
2
).  Despite the extensive use of 

GIS in WUI maps (e.g. Radeloff et al., 2005; Kamp and Sampson, 2005) these efforts have 

received criticism due to lack of precision and poor quality of input data (Stewart et al., 2007
2
).  It 

has also been noted that disparity between WUI definitions has resulted in map discrepancies 

between and within political boundaries (Wilmer and Aplet, 2005).  The problem is compounded 

in that many WUI treatments and regulations are based on limited scientific study (Mell, 2007) 

with, until recently, there being no physics-based wildland or WUI fire behavior models (Mell, 

2008
1
).  There are a number of semi-empirical wildland fire behavior models, but these do not 

model fires in the WUI (Evans et al., 2004
2
).  Fire behavior models being developed at the BFRL 

are attempting to provide a scientific basis for WUI risk assessment and mitigation (Mell, 2008
1
).  

This could result in a more robust definition of the WUI leading to more consistent WUI mapping 

efforts, which could help to better protect lives and properties in these areas while focusing 

mitigation efforts in appropriate locations. 

The WFDS is used to model WUI fires and is a modification of the BFRL Fire Dynamics 

Simulator (FDS) developed at NIST (Mell, 2008
2
).  As described in McGrattan et al. (2009), FDS 

has the following characteristics: 

• Computational Fluid Dynamics (CFD) model. 

• The Navier-Stokes equations for low-speed, thermally-driven flow are solved 

numerically. 

• There is an emphasis on smoke and heat transport from fires. 

• A three-dimensional, rectilinear grid is used to update the approximate solution of the 

conservation equations of mass, momentum and energy. 

• Thermal radiation is computed on the same grid as above. 

• Smoke, sprinkler and fuel movement are simulated using Lagrangian particles. 

BFRL has been developing FDS to predict fire spread in structures for more than 25 years, 

resulting in a freely distributed, well regarded and widely used model in the urban fire protection 

industry (Rehm et al., 2003).  Modifications to FDS to include structure to structure fire spread as 

well as fire spread in continuous and discrete natural fuels (Rehm et al., 2003) have resulted in 

WFDS, the first of its kind physics-based wildland and WUI fire behavior model (Mell, 2008
1
).  

The prediction of fire spread in the WUI using WFDS is, however, complicated by the need to 

quantify the three-dimensional distribution of structures and vegetation (Evans et al., 2004
1
).  

Other detailed information required for WFDS includes local meteorology and the material 

properties of structures and vegetation (Rehm et al., 2003).    Geospatial technologies such as GIS 

and remote sensing allow for the creation of spatially explicit data sets of forest fuels and can 

enhance fire modeling (Perry, 1998).  In addition, the processes of fire ignition, spread and effects 

are spatial in nature (He, 2007).  Spatially explicit inventories of vegetation and structures across 

any extensive landscape, however, are labor intensive and costly (Hall et al., 2005).  Remotely 

sensed data provides the ability to obtain spatially explicit data sets over large areas with the 

potential to more efficiently map ground fuels (Kean et al., 2001) and create inputs to WFDS.          

While the basic requirements for WFDS inputs are understood, the determination of certain 

requirements for remote sensor characteristics such as optimal spatial and spectral resolution, 
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accuracy, and optimal sensor type(s) is in its infancy.  This study represents an initial step to 

assess the feasibility of using remotely sensed data in conjunction with GIS for deriving inputs to 

WFDS.  Methodologies for the extraction and derivation of WFDS inputs from remotely sensed 

data are examined focusing on the extraction of building, vegetative and fire barrier information 

as distinct entities but in an environment where the elements overlap (i.e., the WUI).  In addition, 

the problem of transferring this GIS data to WFDS input files is examined.             

1.2 Data Sources 

The data sources used for this project come from three basic sources: 

1. Existing GIS data. 

2. Existing remotely sensed data. 

3. Derivatives of the remotely sensed or GIS data. 

Existing GIS data consists of ground surveys to determine the material properties and other 

emergency response information about structures as described in section 1.2.1.  In addition, the 

Coeur d’Alene Tribe’s GIS roads data set is used as an initial identification of fire barriers as 

described in section 1.2.2.  Remotely sensed data comes from a combination of high-resolution 

active and passive sensors representing state of the art technology in sensors as well as common 

sensors used in many locales across the United States.  The sensors used also provide imagery 

portraying man-made and natural features in vertical, horizontal and oblique directions, 

representing a unique combination of views for deriving spatially explicit WFDS inputs.   

Remote sensors for extraction of spatially explicit data sets for the WFDS can fall into two 

general categories: passive and active sensors (Campbell, 1996).  Passive remote sensors record 

the reflection of solar radiation or emitted energy from the earth’s surface or objects on that 

surface (Campbell, 1996).  Active remote sensors record energy emitted from the sensor and 

reflected back from the earth’s surface or objects on that surface (Campbell, 1996).  Different 

sensors provide variations in spatial, radiometric, spectral and temporal resolutions; data 

processing procedures and costs; and accuracy (Baltsavias and Gruen, 2003).  Sensor data 

requirements are application dependent and can vary greatly (Baltsavias and Gruen, 2003).  Many 

studies, however, have shown potential for automating the extraction of building footprint and 

tree stem locations from remotely sensed data (e.g. Weidener and Forstner, 1995; Brunn and 

Weidner, 1997; Mass, 1999; Popescu and Kini 2004).  Most studies, however, tend to focus on 

structures and trees individually with few examining the extraction of these features concurrently 

in a WUI environment.   

1.2.1 Structure Materials (NFPA 1144) 

The data collection procedures for structures is based on the National Fire Protection Association 

1144 Standard for the Protection of Life and Property from Wildfire (NFPA, 2008).  This 

standard provides a methodology for assessing wildland fire ignition hazards around existing 

structures, residential developments, subdivisions and improved property or planned property 

improvement that will be located in a WUI environment.  It also provides minimum requirements 

for new construction to reduce the potential of structure ignition from wildland fires.  The Coeur 

d'Alene Tribe made modifications to this database to allow additional data to be collected specific 

for this project.   

Data collection for structures began in October of 2001 and lasted until November  of 2003.  

Structure locations were recorded by field technicians using ArcPad software loaded on a global 

positioning system (GPS) unit.  ArcPad is a mobile mapping unit ideally suited for integrating 

GPS and GIS operations and a custom form was created to record attribute information associated 
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with each structure.  Initial data collection focused on structures located within the combined 

extents of the Coeur d’Alene Tribe and Benewah County.   

Twenty-eight attributes relating to structural characteristics were collected in the field.  The key 

fields collected that related to the WFDS are: building roof type, building roofing material, and 

building siding material.  The structures layer also contains 13 of the NFPA attributes: ROOFING, 

BLDGMAT, WATERSRC, ONSITEPRO, INGEGR, RDWIDTH, RDSURF, FIREACCESS, 

STREETSIGN, VEG, DEFSPACE, SLPSETBACK, and GASELEC.  For more details of the 

attribute information for the structure layer, see Appendix C.  Photos of structures were also 

collected, associating each structure by its structure ID. 

The structure data was collected as part of a pre-fire survey.  In order to run the Wildland-Urban 

Interface Fire Dynamics Simulator (WFDS), building siding material, building roof type, and 

building roof material are required as input data.  The building information defines the surface 

fuel level, which combined with building feature class polygon and building digital surface model, 

will be inputted into the WFDS fire model simulator.  

Another use of structure data is validation of the WFDS fire model simulator results.  Structures 

data was collected after the fire and comparing the WFDS fire simulator results with the post-fire 

structure data will verify the correctness and accurateness of the fire model simulator.  

Furthermore, it can improve the algorithm of fire model.  Data from structures might help to 

answer some question about the fire behavior and it can be used to further improve the WFDS 

fire model.  For further examples of how the Coeur d'Alene Tribe has incorporated structures into 

its applications please review an article published on the Tribe in ESRI's Measuring Up press 

book (ESRI 2004). 

 

1.2.2 Roads GIS 

The road GIS layer is a compilation of data from various sources including, but not limited to, the 

United States Forest Service (USFS), Bureau of Land Management (BLM), University of Idaho, 

Idaho Department of Lands, and the Coeur d'Alene Tribe.  All data was gathered at a scale of 

1:24,000 and accuracy of the road layer is limited to the collective accuracy of the original data 

source.  The Kootenai County roads data set was used for additional updates.  Data was also 

improved by updating road names and by assigning address ranges to roads located in Benewah 

County.  

Despite updates to the roads layer occurring on a regular basis recent road changes may not be 

reflected in the dataset.  Also, there are some roads that do not have attribute information (e.g., a 

street name) and some roads are not spatially accurate (e.g., they do not line up with roads present 

on aerial imagery).  

The road layer was used mainly for two purposes.  First it was pre-loaded into ArcPad to help 

ground crews easily locate themselves when they were collecting the structure field data.  The 

road layer typically has a street name, which will facilitate the field data collection by allowing 

people to identify or verify the home address.  Another use of roads layer is to validate the road 

fire barrier generated by feature extraction tool.  For instance, some streets were blocked by trees 

canopy coverage. The feature extraction tool might miss those roads because they are obscured 

by tree coverage and the road layer is a good reference data source to correct these kinds of 

problems. 
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1.2.3 NAIP 

The 2004 National Agriculture Imagery Program (NAIP) imagery for the state of Idaho was used 

in object oriented classifications to derive a vegetation mask used in the building extraction 

process as well as the derivation of fire barrier features as described in section 4.0.  The 2004 

NAIP imagery was acquired 

with the Leica ADS30 

digital sensor, a passive 

sensor; characteristics for 

this imagery are described 

in Table 1.  This type of 

imagery is pertinent to the 

examination of feature 

extraction methodologies 

for the derivation of WFDS 

inputs due to its availability 

in many locations 

throughout the United 

States.  The NAIP Program 

goals consist of providing 

new imagery on an annual 

basis with ortho-imagery 

acquired on a 1 to 5 year 

cycle (NAIP, 2002).  In addition, the NAIP Program is beginning to offer a near-infrared band as 

an extra option, which could further aid in feature extractions to produce WFDS inputs (NAIP, 

2008)
1
. 

1.2.4 LiDAR 

Light Detection and Ranging (LiDAR) data flown in February 2005 by Horizons, Inc. was used 

in both the building and tree extraction processes.  This LiDAR data, obtained across the Coeur 

d’Alene Tribe Reservation, was acquired with a LH Systems ALS50 LiDAR System, an active 

sensor, with characteristics shown in Table 2.  LiDAR data has shown an increased use over the 

past 15 years due to improvements in sensors, global positioning systems (GPS) and inertial 

mapping systems (IMS).  In addition, LiDAR has become the standard for high resolution 

topographic mapping over large extents.  There are currently no nationwide programs to acquire 

LiDAR data, however, a National LiDAR Initiative (Stroker et al., 2007) is being discussed with 

several statewide efforts being completed or in the planning stages (e.g. Pennsylvania, Iowa and 

Oregon). 

LiDAR data provides a point cloud of data where each point represents a return from a surface 

feature with horizontal and vertical coordinates.  In addition, LiDAR provides the signal strength 

of each return pulse as an 8 bit value.  Finally, most LiDAR data provides information about the 

return number and number of returns in each laser pulse, the scan angle, edge of flight line 

information and GPS time.  A binary public file format for the storage and exchange of this 

LiDAR point data, termed the LAS file format, has been created.  This LAS Format Standard is 

maintained by the American Society for Photogrammetry and Remote Sensing (ASPRS) 

Standards Committee.  The LAS format used for raw data processed and analyzed for this project 

                                                 
1
 A near-infrared band was available for use with this project but due to the infrared lens being pointed off 

nadir, taller features such as trees and buildings were shifted and this imagery was, consequently, not used 

in this project. 

Table 1  NAIP 2004 specifications. 

NAIP Specifications 

Flight Height  23,000 feet 

Capture Season Full Agricultural Growth 

Cloud Cover 10% 

Raw Data Spatial 

Resolution 

0.9 meters 

Final Product Spatial 

Resolution 

1 meter 

Spectral Resolution 3 color bands:  Optional infrared 

band 

Radiometric 

Resolution 

8 bit 

Horizontal Accuracy +/- 3 meters of reference digital 

ortho quarter quads (DOQQs) 

Orthorectified Yes (10m or 30m USGS DEM) 
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was 1.0.  New LAS formats have been developed since the acquisition of LiDAR data used in this 

project. 

1.2.5 Pictometry 

The final source of remotely sensed data comes from both nadir and oblique multispectral 

imagery.  Pictometry, Inc. acquired this imagery in the fall of 2008 across the Coeur d’Alene 

Tribe Reservation with characteristics shown in Table 3.  Many locales across the country have 

Pictometry imagery 

available.  This imagery, 

however, is proprietary but 

is usually available for 

purchase.  Both nadir and 

oblique feature extractions 

are possible with this 

imagery, but for this 

project it was used to aid 

in the accuracy 

assessments for the 

building and tree 

extractions.  This imagery 

was acquired after much of 

the processing procedures 

had been developed and 

analysis conducted for this 

project so WFDS input 

data sets were not 

produced from this 

imagery.   

The oblique characteristics 

of this imagery in 

conjunction with 

proprietary tools developed by Pictometry, Inc., however, could allow for the manual 

measurements of vertical characteristics of building and vegetation.  It is, consequently, believed 

this imagery has large 

potential for deriving 

WFDS inputs in absence 

of other vertical 

information such as 

LiDAR but would 

require more manual 

intervention.  When 

vertical information is 

available, the Pictometry, 

Inc. imagery can be used 

to assess the accuracy of 

automated feature 

extractions and other 

exploratory data analysis.  

Table 2  LiDAR data specifications. 

LiDAR Specifications 

Flight Height  

(Above Mean Terrain) 

6,000 feet 

Field of View 25 degrees 

Collection Mode 3+3 

Number of Flight Lines 82 

Number of Flight Line 

Miles 

1,712 

Swath Width 2,660 feet 

Line Spacing 1,862 feet 

Maximum Along Track 

Spacing 

1.8 meters 

Maximum Cross Track 

Spacing 

2.6 meters 

Nominal Post Spacing  2.0 meters 

Number of Basestation 

Locations 

1 

Estimated Horizontal Error 

(1 sigma) 

0.21 meters Nadir; 0.22 meters 

FOV 

Estimated Vertical Error  

(1 sigma) 

0.15 meters Nadir & FOV 

Table 3  Pictometry imagery specifications. 

Pictometry Specifications 

Flight Height  Varies 

Capture Season Fall 

Cloud Cover Fly Below Clouds 

Nadir Product Spatial Resolution 0.5 to 1 foot 

Oblique Spatial Resolution 0.5 to 1 foot 

Spectral Resolution 3 color bands 

Radiometric Resolution 8 bit 

Horizontal Accuracy Unknown 

Nadir Imagery Ortho-rectified Yes (LiDAR 1m DEM) 
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1.3 Processing Tools and Initial Products 

Any remote sensing analysis requires certain manipulations and combinations of various image 

sources to make them suitable for further analysis.  This section briefly describes the tools used in 

the building, tree and fire barrier feature extractions and the derivation of certain data inputs 

required for these extractions.  Other derived products specific to the particular feature extraction 

being discussed are detailed in the respective section.  There are many software packages 

available for this type of work where algorithms and processes employed in most commercial 

software packages are proprietary with specific implementations not generally being known by 

users.   

This project utilized ERDAS Imagine 9.0 for the geo-rectification and mosaicing of images and 

combinations of different bands of data into multi-band images.  ENVI 6.3 was employed to 

derive textural measures of occurrence.  LiDAR digital surface and elevation models (DSM and 

DEM) were created using ArcGIS software and custom scripts and tools.  LP360 was used for 

editing LiDAR point clouds, analysis, visualization, and display.  Finally, Feature Analyst was 

used to perform various object oriented image classifications. 

1.3.1 LiDAR Bare Earth DEM Generation 

The first step in most LiDAR analysis projects is the segmentation of ground points from the 

LiDAR point cloud.  This study used an open source implementation of the Multiscale Curvature 

Classification (Evans and Hudak, 2007) developed in the Arc Macro Language (AML) for 

ESRI’s workstation Arc/Info.  LiDAR point clouds in LAS format were converted to Arc/Info 

coverages and the above AML was run.  This AML leaves artifacts from buildings and other 

man-made objects that were manually removed.  The resulting ground points where then used to 

create a triangulated irregular network (TIN), which was converted to a 1 meter DEM raster data 

set using ArcGIS software.  In addition, an initial DSM was created by interpolating the first 

return LiDAR points in the same manner as the ground points described above. 

1.3.2 NAIP Geo-rectification 

The NAIP imagery was geo-rectified to the LiDAR DSM.  A comparison of Table 1 and Table 2 

shows the difference in horizontal accuracy between the NAIP and LiDAR data.  The raw LiDAR 

point data is purported to have a better horizontal accuracy compared to the NAIP.  The created 

digital surface products have, however, not been assessed for horizontal or vertical accuracy and 

are likely less accurate than the raw point data but it is believed the horizontal accuracy of the 

interpolated LiDAR points would have a horizontal accuracy greater than the NAIP imagery.  

There are, consequently, obvious shifts in features between the NAIP and LiDAR imagery.  Any 

fusion technique combining the NAIP and LiDAR requires proper alignment between the two 

image sources
2
.  This was achieved by using the ERDAS Imagine Raster/Geometric Correction 

tools.  Building corners were identified and used as the ground control points between the two 

sources.  Building corners were identified in both images by performing a variance texture 

analysis of the LiDAR first return DSM and the NAIP in ERDAS Imagine.  The rectification was 

completed with a Root Mean Square Error (RMSE) of 0.5 meters.  It should also be noted that 

this geo-rectification does not improve errors common in digital imagery, which might distort 

taller objects such as buildings or trees. 

                                                 
2
 Having the imagery of interest ortho-rectified to the LiDAR data will alleviate misalignments between the 

two image sources and is the preferred method.   
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1.3.3 LiDAR Processing Core Library 

The raw point cloud of LiDAR data was converted to grid or raster products as described above.  

The algorithms to extract building and tree information described in subsequent sections use these 

LiDAR derivatives as ancillary data in the feature extraction processes but the main algorithms 

operate directly on the LiDAR point cloud of data.  A single LiDAR tile can contain several 

million points or more with processing algorithms requiring many iterative procedures.  It is, 

consequently, a requirement to have an efficient means of point cloud access.  Ordered binary 

trees are a classic data structure used to store and access data efficiently.  Binary trees are 

characterized by each node in the tree having at most two branches, the left and the right branch, 

where the node can have only one branch or no branches, in which case it is called a leaf.  The 

algorithms developed for this project utilize binary tree data structures implemented in a C#.NET 

library developed by McNamara Consulting, Inc. with custom search geometries to very quickly 

iterate over the point cloud of data.  These libraries also contain methods to read and write to 

LiDAR data stored in LAS format 1.0.  The LiDAR processing tools developed as part of this 

project, using the above library, are written in VB.NET and run in a windows environment.  The 

feature extraction algorithms make use of certain GIS operations contained in the ArcGIS 

software and utilize the COM-based library known as ArcObjects.  There is a user manual 

describing the functionality of these tools contained in Appendix B. 
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Section 2.0 Building Feature Extraction in the WUI 

Abstract 

Building information is used in many fields including planning, telecommunications and 

environmental sciences.  There is also an emerging use of building information in Wildland-

Urban Interface (WUI) assessments with a need for efficient and accurate tools and algorithms to 

extract building information from remotely sensed data.  This section presents an automatic 

approach for the segmentation of above ground LiDAR points to buildings and the subsequent 

extraction of building footprints from the segmented point cloud.  This work is conducted in the 

context of deriving inputs for the Wildland Fire Dynamics Simulator (WFDS).  The point 

segmentation algorithm incorporates a landcover classification from a fusion of LiDAR and 

multi-spectral imagery as a mask in a unique manner with a custom laser pulse algorithm 

employed to remove vegetation points.  A plane fitting approach is then used to segment the 

LiDAR point cloud to building and non-building points.  The accuracy of the segmentation 

algorithm is assessed in a study area encompassing 449 structures in Worley, Idaho.  Two 

methods are then examined for building boundary determination (i.e., building footprint 

extraction) from the segmented point cloud:  a raster based method and a point based method.  In 

addition, the accuracy of LiDAR measured building corner heights and roof apexes are compared 

against field measurements for 24 buildings. 

The segmentation algorithm achieves an overall accuracy of 97% for distinguishing between 

building and non-building points given an accurate bare-earth digital elevation model. The point 

based method achieved producer’s and consumer’s accuracies of 76% and 85%, respectively, for 

building boundary determination.  The raster based method achieved producer’s and consumer’s 

accuracies of 81% and 72%, respectively, for building boundary determination.  The root mean 

square error (RMSE) between the LiDAR measured building corners and field measured building 

corners was 0.25 meters with the means showing a tendency for the LiDAR to overestimate 

building corner height.  The RMSE between the LiDAR measured building maximum heights and 

field measured building maximum heights was 0.89 meters with the means showing a tendency 

for the LiDAR to overestimate building maximum height.  The poorer results for maximum 

building height comparisons might be attributed to manual measurement error.  Overall the 

methods show excellent potential for deriving the three dimension distribution of buildings in 

context of producing WFDS inputs.  Furthermore, results can easily be improved using manual 

interaction and the developed tools to increase the accuracy of the building footprints.  The use of 

LiDAR and multispectral imagery for deriving the horizontal and vertical extent of buildings for 

inputs to WFDS is likely the only practical method over any large area.      

2.1 Previous Work 

This study stems from the need for the efficient and accurate quantification of the three 

dimensional distribution of structures for inputs into WFDS, with the mapping of WUI structures 

having the additional benefit of aiding in the creation of policy maps and visual images (Stewart 

et al., 2007
2
).  Housing density has also been shown to be one of the most sensitive parameters in 

evaluation of the national WUI (Stewart et al., 2007
1
).  A key component of the correct 

delineation of the WUI is, consequently, the accurate delineation of building information.  WFDS 

takes as inputs the horizontal and vertical extent of buildings, building siding and roofing material, 

and building vents such as chimneys, doors and windows.  Remote sensing provides an efficient 

means of deriving some of these types of building information (Haithcoat et al., 2001) with active 

research occurring in this area for decades (Brenner, 2005).  This section focuses on the 

extraction of the horizontal and vertical extent of buildings from remotely sensed data.  
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The extraction of building information from passive remote sensors has historically focused on 

the use of high-resolution aerial imagery (Huertas and Nevatia, 1986; Irvin and McKeown 1989) 

and more recently satellite imagery (Sohn et al., 2005; Shan and Lee 2005) with less attention 

being paid to hyperspectral data (e.g. Huertas et al., 1999) and thermal remote sensing data (e.g. 

Trujullo et al., 2005).  Early efforts from these passive remote sensors occurred using manual 

methods from aerial image sources (Mayunga et al., 2005).  These manual methods are labor and 

cost intensive with large area extraction not being feasible (Ruther et al., 2002) and have led to 

many attempts to automate building extraction from remotely sensed imagery (e.g. Woo et. al., 

2008; Mayunga et. al., 2005; and Gulch, 2000).  Due to difficulties with extraction of 3D building 

structures from a single 2D image (Pu, 2007) later work focused on a multiple-view approach 

(Fradkin et al., 1999; Noronha and Nevatia, 2001) where the use of image produced digital terrain 

models (DTM) was incorporated. Recently, high-resolution satellite imagery such as quickbird 

(Mayunga et. al., 2005) and IKONOS (Sohn and Dowman, 2001) has received attention.  

Regardless of the sensor used, approaches can involve image segmentation (Zimmermann, 2000), 

image transformations such as the 2D Hough Transform (Wei et al., 2004), other morphological 

operators (Baltsavias et al., 1995), the fitting of object models (Yi-Hsing and Wang, 2001) and 

other creative approaches or combination of approaches (Muller and Zaum, 2005).  Despite the 

extensive research in this area, automated processing of building information from aerial imagery 

is still at a very early stage (Brenner, 2005).  There are many reasons for this including variations 

in image type, scale and resolution (Wang and Tseng, 2003); variation in environments where no 

single approach is best (Gruen, 2000); and issues with shadows, occlusions, building lean and 

between scene variations.     

The use of active sensors has also been examined for the extraction of building information.  

Interferometric Synthetic Aperture Radar (IFSAR) has been used in conjunction with other 

imagery to aid in building detection (Huertas et al., 1998).  LiDAR data, however, has been 

shown to provide better shape delineation of buildings over IFSAR data due to higher resolution 

and lack of shadowing/layover effects (Gamba and Hoshmand, 2000).  During the 1990’s LiDAR 

data became available with improvements in the sensors and geo-referencing capabilities 

resulting in sufficient accuracy for various topographic mapping purposes (Brenner, 2005).  

LiDAR technology has been a mature technology for a decade with many companies offering 

various services (Baltsavias, 1999) and the technology is well established for the generation of 

highly accurate digital terrain models (Hollaus and Wagner, 2006).  In addition, the ability to 

extract building information has been demonstrated by a number of studies listed below.  LiDAR 

building extraction approaches fall into two general categories:  extraction from the interpolated 

point cloud of data or DSM (e.g. Rottensteiner and Briese, 2002) or use of the raw point cloud of 

LiDAR data (Sampath and Shan, 2007).   

Raster based methods turn irregularly distributed laser scanning data into grid form to reduce data 

requirements and enhance speed of processing (Cho et al., 2004).  Raster methods for building 

extraction typically begin with segmentation of ground and non-ground points where the ground 

and non-ground points are interpolated to grids (i.e., DEM and DSM, respectively) that are 

differenced with building height thresholds employed (e.g. Al-Harthy and Bethel, 2002).  This 

initial segmentation can be further expanded to remove vegetation pixels in a variety of 

approaches such as the use of surface roughness (Haithcoat et al., 2001), edge detectors such as 

Laplacian edge detectors combined with shape information (Wang, 1998), curvature based 

methods (Rottensteiner and Briese, 2002), the use of shape cues in a Bayesian network (Brunn 

and Weidner, 1997) or the identification of planar patches (Gamba et al., 2005).  Traditional pixel 

based classifiers have also been used such as Mass (1998), who incorporated several texture 

measures of a LiDAR derived DSM into a maximum likelihood classification.  Additionally, 

object oriented image classification and segmentation techniques have been used, which account 

for the contextual information surrounding each pixel, in the extraction of building information 
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(Ibrahim, 2005).  The use of a TIN model has also been used for building boundary determination 

where a connected component analysis of the TIN model was used to segment individual 

buildings (Morgan and Habib, 2002). 

Raster based methods suffer from the introduction of errors during the interpolation process (Cho 

et al., 2004) and have difficulty in distinguishing vegetation from buildings (McNamara, 2006).  

In order to overcome this introduction of error and better able segmentation of vegetation from 

buildings, the extraction of building information directly from the LiDAR point cloud has been 

attempted (McNamara, 2008; Wang and Tseng, 2004).  As with raster based methods, an initial 

segmentation to ground/non-ground points is often performed.  Additional segmentations to 

differentiate buildings versus other features such as vegetation have been conducted by extending 

the well known Hough Transform to 3D (Vosselman and Dijkman, 2001).  Filin (2002) used a 

surface clustering technique to identify homogenous areas in the LIDAR point cloud.  In addition, 

the high point densities achievable with LiDAR allow for the detection of planar roof faces in 

LiDAR point clouds (Vosselman and Dijkman, 2001).  Least squares regression methods are 

common for fitting planar surfaces to the 3D point cloud (e.g. Zeng, 2008)  with Engel et al., 

(2008) using the well known RANSAC technique for fitting surface planes and Wang and Tseng 

(2004) using an octree data structure for efficient data processing.  Vosselman and Dijkman 

(2001) used building ground plans to aid in the building boundary determination from the 

segmented points.  Sampath and Shan (2007) used a modified convex hull approach to trace the 

boundary of a grouped set of segmented LiDAR building points.  A side ratio constraint based 

boundary tracing algorithm that utilizes a TIN model was used by Huang et al. (2008). 

Integration of LiDAR and passive optical sensors has also been utilized to extract building 

information due to the complimentary nature of the two technologies (Brenner, 2005).  Aerial 

images are used to add additional planar patches to LiDAR planar patch segmentation and 

improve the geometric quality of extracted buildings by matching LiDAR and image edges 

(Rottensteiner and Briese, 2003).  Novacheva (2008) used planar patches found from LiDAR data 

in conjunction with color edge detection of aerial images to reconstruct building roofs.  The use 

of LiDAR and aerial imagery edge detections is combined in Yong and Huayi (2008) where the 

missed building edges in LiDAR data are corrected with aerial imagery edges and the occluded 

edges in aerial imagery are corrected with LiDAR data.    

2.2 Point Cloud Segmentation 

This study used the approach of segmenting LiDAR building points where the procedures and 

algorithms utilized are displayed diagrammatically in Figure 1.  Initial steps segment points 

unlikely to be buildings based on characteristics of the point under consideration and spatial 

relationships with ancillary data.  A plane fitting approach is then employed.  A bare earth DEM, 

which for this study was produced as described in section 1.3.1, and an input binary grid 

vegetation mask are input to the segmentation procedure.   

As described above, general methods for segmentation of LiDAR point clouds to buildings are 

typically either grid or point based.  Comparisons between grid and point based methods are not 

made for the point cloud segmentation procedures.  This is because most, if not all, grid based 

methods result in some data loss due to aggregation, which can be particularly pronounced in 

buildings surrounded by vegetation.  Point based methods have a greater probability of 

classifying building points surrounded by vegetation, a key component in WUI assessments as 

well as potential to identify other sources of building segmentation error described in Cheuk and 

Yuan (2009).  Furthermore, initial research for this project as described in McNamara (2006) 

determined that raster based methods suffer from the problem of not identifying buildings 

underneath or surrounded by vegetation.  This situation essentially defines the WUI and it was, 
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therefore, concluded that point based segmentation methods have better potential for identifying 

buildings surrounded by vegetation compared to raster based segmentation methods.       

2.2.1 Height and Last Return Filter 

The LiDAR building filter begins with a segmentation of the input LiDAR point cloud to ground 

and non-ground points.  This is accomplished by converting the point cloud to an ArcInfo 

coverage data model and running the ground segmentation AML.  A bare earth DEM is then 

created from the segmented ground points by first creating a TIN and converting this TIN to a 

raster data set.  All subsequent steps are run on an in-memory LiDAR point cloud.  The first pre-

processing step prepares the input point cloud of data to only examine the last returns as possible 

building points.  It has been shown that the use of the last return in building extraction can help to 

improve results (Matlkalnen, 2009).  It is, however, the case that the use of the last return might 

in some cases miss building edges and decrease building segmentation accuracy (Matlkalnen, 

2009).  The first return of each two return pulse is, consequently, included in the initial filter to 

include possible returns from building edges.  The next step is to remove LiDAR points with 

above ground elevation values above and below user input thresholds, 25 meters for maximum 

height and 2 meters for minimum height, respectively.  This filtering step is conducted by 

determining the bare earth DEM pixel value on which each point in the input LiDAR point cloud 

occurs.  The height value of the DEM pixel value is then subtracted from the height value of the 

particular LiDAR point under consideration.  The point is then removed from consideration if it is 

above or below the input thresholds.  

 

Figure 1 LiDAR point cloud building segmentation workflow. 
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2.2.2 Laser Pulse Filter 

The next filter is used to filter first return of two return pulses that are likely not to be from a 

building edge.  This filter considers the relationship between the first and second return in a 

particular laser pulse and the same first return and ground elevation as determined by an input 

bare earth DEM.  The distance between the first and last return in a particular laser pulse is 

determined as well as the distance between the same first return and the ground elevation, as 

portrayed in the input bare earth DEM, for which this first return falls.  If the difference between 

these two distances is greater than a threshold, representing the minimum building height as input 

by the user, all returns in the particular laser pulse are classified as not being a building with the 

exception of the last return, which could be a building covered by vegetation.  This initial 

segmentation takes advantage of the fact that a LiDAR first return pulse when hitting dense 

vegetation, will not always have a last return which hits the ground.  This filter does, however, in 

some cases filter out building points that represent edges of multi-storied buildings.  This should 

not adversely affect the boundary determination as these points are typically interior building 

points.  The above described method does require that the LiDAR points be organized in the 

order in which they were obtained from the sensor. 

2.2.3 Vegetation Mask Filter 

The next filtering step involves the use 

of a binary vegetation grid where pixel 

values of 1 represent pixels classified 

as vegetation and pixel values of 0 

represents pixels classified as non-

vegetation.  This filtering step removes 

those first return points that occur on 

pixels classified as vegetation.  Only 

the first return points are removed to 

allow for other returns that might 

represent buildings underneath 

vegetation.  This vegetation grid can be 

created using many approaches.  For 

example, if color-infrared imagery is 

available, the use of the Normalized 

Difference Vegetation Index (NDVI) 

can be used to show patterns of 

vegetation (Burgan, 1996).  In addition, 

color imagery such as the NAIP 

imagery can be used to distinguish 

vegetation from man-made objects 

(Walker and Briggs, 2005).  Coupling 

this vegetation mask filter with the 

plane fitting described below might 

help to overcome spectral similarities 

between rooftops and roads, a common 

issue with extracting buildings from 

aerial imagery (Xie et. al., 2006), while 

maintaining the ability to identify buildings underneath vegetation.   

For this project, an object oriented image classification approach using the Feature Analyst 

extension for ArcGIS was employed.   Object oriented image classifications take into account 

µ

Study AreaStudy AreaStudy AreaStudy Area

Digitized BuildingsDigitized BuildingsDigitized BuildingsDigitized Buildings

Vegetation MaskVegetation MaskVegetation MaskVegetation Mask
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Figure 2 Above ground vegetation extracted from NAIP 

imagery and LiDAR texture measure. 
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individual characteristics of each pixel as well as neighboring pixels (Walker and Briggs, 2005).  

The inputs to this classification were the NAIP color imagery with a variance texture measure of 

the LiDAR first return DSM.  The three color bands of the NAIP imagery were input as spectral 

bands and the texture measure of the LiDAR first return DSM was input as a texture band.  The 

“learning approach 1” method was used with the feature to extract being chosen as “tree or shrub”.  

Several training sites were “heads-up” digitized off the NAIP imagery and the feature extraction 

process was run.  After the first run the machine learning capabilities of Feature Analyst were 

utilized to remove incorrectly classified features and include missed features.  Several cleanup 

passes were performed with training examples for incorrectly classified features and missed 

features “heads-up” digitized.  The final result is shown in Error! Reference source not found. 

and was converted to a binary grid to be used as the input vegetation mask filter.  A similar 

approach was taken for extracting fire barrier feature types (see Section 4). 

2.2.4 Plane Fitting 

After the above algorithms are run, the segmentation of the LiDAR point cloud to building and 

non-building points occurs by iterating through each point in the point cloud, not removed by the 

above procedures.  A window is fit around each point with dimensions for the window initially 

input as the average point spacing found in the point cloud and adjusted interactively to determine 

optimal parameter values.  This study used a moving window with side lengths of 3 meters.  If 

there are enough points in the window (i.e., more than 3) the least-squares solution to the 

following equation of a plane is solved: 

Ax + By + C = z   (1) 

where 

 x = the X coordinate of the point, 

y = the Y coordinate of the point, and 

z = the Z coordinate of the point. 

The above equation is solved by minimizing the sum of the residuals where residuals are 

calculated as the vertical distance of each data point to the determined plane.  The slope of the 

determined plane is crudely examined where if either the A or B coefficients in equation 1 are 

greater than an input threshold the, points are not classified as buildings.  A slope threshold of 0.6 

(i.e., 60%) was used in this study.  The equation is then evaluated for goodness of fit based on the 

coefficient of determination (R
2
).  This is calculated by first determining the total sum of squares 

(SStot) as follows: 

∑ =
n

1i
2)hatz - i(z    (2) 

    

where 

 zi = the actual height value of a particular point based on equation 1and 

 Zhat = the mean height value of all the points. 

The residual sum of squares (SSreg) is then calculated as follows: 

∑ =
n

1i
2)hatz - pred(z   (3) 

where 

 Zpred = the predicted height value of a particular point based on equation 1and 

 Zhat = the mean height value of all the points. 
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The R
2 
is finally calculated as shown in equation 4: 

   (4) 

If the R
2  
is above an input threshold, a region growing process occurs.  This study used a 

threshold of 0.94.  The R
2
, however, is not an appropriate indicator of goodness of fit for an 

equation of the plane when the slope is 0 (i.e. flat).  For flat planes the R
2
 does not predict any of 

the variability in the vertical direction.  In order to account for this, when the values of A and B in 

equation 1 are less than a threshold (i.e., roofs with flat or relatively flat slopes) the R
2   

is not used 

as the indicator of goodness of fit.  Instead the standard deviation of the residuals in the Z 

direction is used to evaluate goodness of fit where, if this value is less than a threshold, the region 

growing process occurs.  A threshold of 0.2 meters was used in this study. 

The region growing process begins by expanding the moving window, initially in all directions, 

with the expansion value being equal to half the length of a side of the initial moving window.  

The Z distance of each point in the window to the fitted plane is calculated as follows: 

|[(Point Height Value) – (Predicted Height Value from Equation 1)]|  (5) 

Outliers are removed if the value calculated in equation 5 is greater than some threshold.  This 

study used a threshold of 0.2 meters.  If no new points are added, the points in the original 

window are classified and the 

next point in the iteration is 

considered.  If new points are 

added, the direction(s) in which 

these points occur is recorded.  A 

new plane is fit to the points 

which are not removed above.  

The window is expanded again, 

only in the direction for which 

new points are added as shown in 

Figure 3 and the process 

continues until no new points are 

added.  The next point in the 

iteration is considered and the 

process continues until all points, 

not removed in the initial filters, 

have been evaluated.  The 

algorithm concludes with a re-

examination of the LiDAR point 

cloud.  If points within the input 

above ground height threshold (i.e., 2 and 25 meters) are not classified as building, the other 

above ground points within a threshold horizontal and vertical distance, in this study 1.5m 

horizontal and 0.2m vertical, are examined.  If the percentage of these points classified as 

buildings is greater than the input threshold, 50% in this study, the point is classified as a building.  

This last step ensures that returns from off-roof features, building sides and building edges below 

the roof plane are classified as buildings. 

2.3 Building Boundary Determination 

Two methods to delineate the building boundaries are examined.  Both methods utilize the 

segmented LiDAR building points created using the methods described in section 2.2.  One 

 

Figure 3  Directional window example portraying expansion 

in only two directions. 
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method utilizes the LiDAR segmented building points directly and the other method works off of 

an interpolation of the segmented building points and the segmented ground points.  Accuracy 

assessments are run on both of these methods using an approach similar to that described by Song 

and Haithcoat (2005) where ten indexes are described.  Three of these indexes: shape similarity, 

corner difference and root mean square error, are not used in this study.  These indexes are not 

examined because these indexes examine relationships between reference building corners and 

extracted building corners.  Since no orthogonalization of the extracted building footprints was 

conducted, these measures are not appropriate.  The seven indexes used in the building footprint 

accuracy assessments are presented in Table 4. 

                                                 
3
 FP signifies building footprint. 

Table 4 Building footprint extraction accuracy assessment indexes. 

Index Calculation Description 

Detection 

Rate (6) 
∑

∑

FP Reference Digitized

FP ExtractedBy  edInteresect  FP Reference
3 

This measure is the producer’s 

accuracy and shows the percentage 

of extracted footprints coinciding 

with reference footprints. 

Correctness 

(7)  
∑

∑

FP Extracted

FP ReferenceBy  dIntersecte FP Extracted
 

This measure is the consumer’s 

accuracy and can be used as an 

estimate of the reliability of the 

extracted footprints. 

Averaged 

Matched 

Overlay 
(8)  

∑

∑ 








FP ExtractedCorrectly 

Area FP Reference

Area FP gOverlappin
Re ferenceFP

i
 

This measure represents the area in 

common between the traced and 

reference footprint, averaged across 

all correctly extracted footprints.  

Average 

Area 

Omission 

Error (9)  
∑

∑ 








FP ExtractedCorrectly 

Area FP Reference

Area FP Reference Excluded
Re ferenceFP

i
 

This measure represents the area of 

the reference footprint not 

delineated in the extracted footprint, 

averaged across all correctly 

extracted footprints. 

Average 

Area 

Commission 

Error (10)  
∑

∑ 








FP ExtractedCorrectly 

Area FP Reference

Area FP ExtractedFalsely 
Re ferenceFP

i
 

This measure represents the area in 

the extracted footprint that is outside 

the reference footprint, averaged 

across all correctly extracted 

footprints. 

Average 

Area 

Difference 

(11) 

∑

∑ 








FP ExtractedCorrectly 

Area FP Reference

Area FP Reference - Area FP Extracted
Re ferenceFP

i
 

This measure represents the absolute 

value of the difference in area 

between the extracted and reference 

footprint, averaged across all 

correctly extracted footprints. 

Average 

Perimeter 

Difference 

(12) 

∑

∑ 








FP TracedCorrectly 

Length FP Reference

Length FP Reference -Length  FP Extracted
Re ferenceFP

i

 

This measure represents the absolute 

value of the difference in perimeters 

between the extracted and reference 

footprint, averaged across all 

correctly extracted footprints. 
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2.3.1 Point Grouping and Boundary Tracing 

The point grouping and boundary tracing approach is from Sampath and Shan (2007).  The first 

step is to group segmented building points representing a single building into a distinct set.  This 

is accomplished by using another region growing algorithm that begins by fitting a window 

around each segmented building point.  Segmented building points in each window have an 

additional window fit around them and the process continues until no new segmented building 

points are found.  The window dimensions are again dependent on the point spacing of the input 

LiDAR data where the window should have a length and width equal to about twice the point 

spacing.  This study used a square window with side lengths of 4 meters.  If the grouped set of 

points contains 5 or more points the boundary tracing begins. 

The boundary tracing 

algorithm proceeds by 

starting with the left most 

point in the group of points.  

A window is fit around this 

point where the window size 

should be slightly larger than 

the point spacing of the 

input LAS file.  This study 

used a square window with 

side lengths of 5 meters.  

The building segmented 

points in the first window 

are determined and line 

segments are formed 

between the initial point and 

every other point in the 

moving window.  For the 

initial window, the angle 

between the vertical axis and 

each line segment formed 

above is calculated.  These 

angles are sorted in increasing order where the point with the lowest angle is determined as the 

next boundary point.  The same sized window is then fit around the new boundary point and 

segmented building points are identified.  Line segments are again formed between the center 

point and every other point in the moving window.  The line segment formed from the first 

boundary point to the second boundary point is also determined.  The angle between this line 

segment and every other line segment is determined and these angles are sorted in increasing 

order where the point with the lowest angle is determined as the next boundary point.  Each line 

segment determined as a boundary segment must also not intersect an already formed boundary 

line segment.  The process continues until the original point is found as the next boundary point, 

thereby resulting in a traced outline of the building boundary as shown in Figure 4.    

The traced footprints produce a line GIS data set that is converted to a polygon.  These polygons 

are further filtered using an area threshold.  In this study building polygons with an area less than 

10 meters square (m
2
) were removed from the data set.  A value of 10 m

2 
was chosen due to the 

resolution of the LiDAR data set used for this study.  While the nominal post spacing of the 

LiDAR data is 2.0 meters, due to large overlap the post spacing is actually higher than this in 

LiDAR Traced BuildingsLiDAR Traced BuildingsLiDAR Traced BuildingsLiDAR Traced Buildings

Digitized BuildingsDigitized BuildingsDigitized BuildingsDigitized Buildings
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Figure 4  Example boundary tracing overlaid with digitized 

building footprint and Pictometry imagery. 
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most locations and closer to 1.5 meters.  Buildings, less than 9 to 10 square meters (i.e., 3 meters 

by 3 meters) might, therefore, often not have enough points to describe the equation of the roof 

plane.  These small buildings, consequently, can be considered below the resolution of the 

LiDAR data.   

2.3.2 Raster Based Method 

The raster based method builds off of the common approach of using DSMs to extract building 

footprints.  This approach is portrayed in Figure 5.  In this method, the height above the ground of 

LiDAR points is determined by subtracting from the Z value of the respective LiDAR point, the 

pixel value of the DEM for which it occurs.  Points with a value less than a threshold, 2 meters in 

this study, are set equal to 0 with segmented building points being set to the calculated above 

ground height.   The resulting points are converted to a TIN using the above ground height, which 

is then exported to a raster data set.  This produces what can be termed a normalized building 

surface model (nBSM).  This nBSM is converted to an integer grid and another height threshold 

is employed to set cells lower than the input height threshold (i.e., 2 meters) equal to zero.  This 

second height threshold is required due to interpolation between building and ground points 

creating grid cells with values between 0 and the input height threshold.  This nBSM is 

reclassified such that grid cells with a value of 0 are set to No Data.  This raster data set is 

 

Figure 5  Raster height method building footprint extraction workflow. 
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converted to a polygon feature class using the ArcGIS software and an area threshold of 10 m
2 

was used to produce building footprints with an example shown in Figure 6.   

2.4 Building Heights 

The accuracy of building heights as recorded by LiDAR was also examined in this study.  

Twenty-four buildings, as shown in Figure 7, were surveyed.  The height above ground of each 

building corner and roof apex was determined.  Building heights were surveyed using a Trimble 

GeoXH sub-foot accuracy Global Positioning System (GPS) receiver along with a Laser 

Technology Inc. ForestPro Laser Range Finder and Electronic Compass.  The laser range finder 

was mounted on a tripod and the height of each building corner and apex was measured using 

standard procedures for the instrument.  The distance from the location of the tripod to the 

respective building corner or roof apex was also determined using the laser range finder with the 

bearing to the building corner or roof apex measured using the electronic compass.  The location 

of the tripod was measured using the GeoXH GPS where the tripod was setup in a location free of 

obstructions that might result in multi-path errors.  Using this information the precise location of 

the respective building corner was determined as well as the recorded height associated with this 

location.   

The LiDAR point cloud was 

classified using the ground 

and building segmentation 

algorithms described above.  

A DEM of the study area 

was derived by creating a 

TIN from the ground 

classified building points 

and exporting this TIN to a 

raster data set.  The above 

ground height of each 

building classified LiDAR 

point was determined by 

subtracting from the height 

value of the respective point, 

the pixel value of the DEM 

for which the point occurs.  

The surveyed building 

corners or roof apexes 

where manually aligned 

with the closest LiDAR 

classified building point.  

As described below, some 

surveyed building corners had no LiDAR return due to occlusion from vegetation.    

2.5 Results 

This section details results for the accuracy assessments for the two methods of building 

boundary determination.  The accuracy of the automatically extracted building boundaries were 

compared against building boundaries manually digitized from a combination of the NAIP 

imagery and LiDAR DSM.  All buildings in the study area were assessed using ground surveys to 

ensure the digitized boundary represented an actual building.  The study area, containing 449 

buildings, is shown in Error! Reference source not found..   
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Figure 6  Example raster height method overlaid with digitized 

building footprint and Pictometry imagery.  
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Additionally, the accuracy assessments of LiDAR recorded building heights are presented in this 

section.  The study area for these assessments is shown in Figure 7.  This study area was chosen 

because it represented buildings on a sloping terrain and buildings owned by the Coeur d’Alene 

Tribe for which easy access was available.  Measured building corners were manually paired with 

the closest LiDAR classified building corner, if any were recorded by the LiDAR sensor.  

Measured maximum building heights were paired with the maximum above ground height of the 

respective building to produce the assessment results presented below.     

2.5.1 Building Segmentation Accuracy Assessment 

Quantitative assessment of the accuracy of the building segmentation algorithm is a difficult 

process.  This type of assessment might require exact determination of every LiDAR point 

returned from a building 

and the differentiation 

between returns from 

building sides, building 

roofs and off-roof 

features such as 

chimneys and events.  

This would be an onerous 

exercise where the 

assessments of the 

accuracy of the boundary 

tracing and raster 

methods presented below 

might provide sufficient 

information for the 

determination of the 

appropriateness of using 

the discussed building 

segmentation procedure.  

Nonetheless, a simple 

error matrix was developed for the building segmentation algorithm.  This error matrix was 

developed by first combining all segmented building points with other points within the height 

threshold used for this study (i.e., points greater than or equal to 2 meters above ground and 

points less than or equal to 25 meters above ground).  Points within this set not segmented as 

buildings were considered segmented non-building points.  The points from the entire point set, 

within the height threshold, which intersected the digitized building boundaries where selected 

and marked as reference building points.  All other points, within the height threshold, were 

considered to be reference non-building points.   

From the above data, an error matrix shown in Table 5 was created and results were derived as 

described in Campbell (1996).  The producer’s accuracy shows that about 87% of the reference 

building points were correctly segmented by the segmentation algorithm with about 99% of the 

reference non-building points correctly segmented.  The user’s accuracy shows that for this 

particular LiDAR data set about 85% of the points segmented as buildings correspond to 

reference building points with about 99% of the non-building points corresponding to reference 

non-building points.  The error of omission for the segmented building points shows that about 

13% of the examined LiDAR points, which were building returns in the reference data, were 

incorrectly excluded from the building segmentation.  The error of omission for the segmented 

non-building points shows that about 1% of the examined LiDAR points, which were non-

building returns in the reference data, were incorrectly segmented as buildings.  The error of 

Table 5 LiDAR building segmentation error matrix. 

CLASS
Building 

(Points)

Non-

Building 

(Points)

Row 

Total

Producer's 

Accuracy 

(%)

Errors of 

Omission 

(%)

Building 

(Points) 75,219 11,107 86,326 87.13 12.87

Non-Building 

(Points)
12,955 936,148 949,103 98.64 1.36

Column Total
88,174 947,255 1,035,429

User's 

Accuracy (%)
85.31 98.83

Overall 

Accuracy 

(%) 97.68

Errors of 

Commission 

(%) 14.69 1.17

K^

0.85

R
E
F
E
R
E
N
C
E
 D
A
T
A

SEGMENTED DATA
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commission for the segmented building points shows that about 15% of the examined LiDAR 

points were incorrectly segmented as building points with about 1% of the examined LiDAR 

points incorrectly segmented as non-building points, according to the reference data.  The overall 

accuracy of the building segmentation algorithm for segmentation of building and non-building 

points is about 98%.  Finally, the value K^ (kappa coefficient) can be interpreted to mean that the 

segmentation achieved an accuracy that is 85% better than would be expected from random 

assignment of points to categories of building and non-building.       

2.5.2 Boundary Tracing and Raster Height Method Accuracy Assessments 

The accuracy assessment results for the boundary tracing and raster height method are shown in 

Table 6.  The detection rate shows that about 76% of the reference building boundaries contained 

traced polygons.  The correctness rate shows that about 85% of the traced polygons represent 

actual buildings on the ground.  The 

average matched overlay shows that for 

the traced polygons coinciding with 

reference buildings there is about 77% 

area in common, on average.  The traced 

polygons representing reference 

building boundaries exclude about 23% 

of the reference building footprint area 

with about 7% of these traced polygons 

area not coinciding with reference 

footprint area, on average.  On average, 

there is about a 19% difference in area 

and a 7% difference in perimeter 

between the traced and reference 

boundaries.  An examination of the 

means of the traced footprint area (153 

m
2
) and the reference footprint area (175 m

2
) indicates the corresponding reference footprints 

have a higher area compared to the traced footprints.      

The detection rate for the raster height method shows that about 81% of the reference building 

boundaries contained raster height polygons.  The correctness rate shows that about 72% of the 

raster height polygons represent actual buildings on the ground.  The average matched overlay 

shows that for the raster height polygons coinciding with reference buildings there is about 82% 

area in common, on average.  The raster height polygons representing reference building 

boundaries exclude about 18 % of the reference building boundary area with about 9% of these 

raster height polygon areas not coinciding with reference footprint area, on average.  On average, 

there is about a 14% difference in area and a 29% difference in perimeter between the raster 

height and reference footprints.  An examination of the means of the raster height footprints area 

(160 m
2
) and the corresponding reference footprint area (169 m

2
) indicates the corresponding 

reference footprints have a higher area compared to the raster height footprints.      

2.5.3 Building Height Accuracy Assessment 

Each of the 24 buildings measured for height had the highest point on the building measured.  In 

addition, each building corner was measured representing 129 original measurements.  There was 

one gross outlier in the building height measurements; one building that did not have the 

maximum height recorded; and 8 spatial outliers in the building corners where the precise 

location of the measured building corner could not be aligned with the respective LiDAR building 

corner.  These outliers were likely due to measurement error.  In addition, there were 8 measured 

Table 6 Boundary tracing and raster method 

accuracy assessment results. 

Index Boundary 

Tracing 

(%) 

Raster 

Height 

(%) 

Detection Rate 76 81 

Correctness 85 72 

Average Matched 

Overlay 

77 82 

Average Area Omission 

Error 

23 18 

Average Area 

Commission Error 

7 9 

Average Area Difference 19 14 

Average Perimeter 

Difference 

7 29 
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building corners that were not observed in the LiDAR data due to being surrounded by dense 

vegetation. 

Figure 8 shows a plot of field measured 

maximum building height versus LiDAR 

measured maximum building height.  Table 

7 shows the means of the field measured and 

LiDAR measured maximum building heights 

as well as the mean square error (MSE) and 

root mean square error (RMSE) of the field 

measured maximum building height versus 

the LiDAR measured maximum building 

height.  Figure 9 shows a plot of field 

measured building corner heights versus 

LiDAR measured building corner heights.  

Table 8 shows the means of the field 

measured and LiDAR measured building 

corner heights as well as the mean square 

error (MSE) and root mean square error 

(RMSE) of the field measured building 

corner height versus the LiDAR measured 

building corner height.         

2.6 Discussion 

Overall the building segmentation algorithm 

showed promise for the proposed methods 

ability to segment LiDAR building points.  

Both the boundary tracing method and raster 

height method also showed promise for 

automatic extraction of building boundaries from a segmented point cloud.  LiDAR derived 

building heights compared well to 

field measured building heights 

with manual measurement error 

possibly accounting for some of 

the discrepancies.  The LiDAR 

data did not, however, typically 

penetrate through dense 

vegetation surrounding buildings 

but only a small population was 

examined.  The developed tools 

used for these procedures, 

however, allow for quick clean-up 

of the segmented LiDAR point 

clouds, thereby allowing for even 

higher accuracies with some 

manual intervention.  
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Figure 7  Building height accuracy assessment 

study area. 
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Figure 8  Field measured versus LiDAR measured maximum 

building heights. 
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2.6.1 Building Segmentation 

The building segmentation algorithm showed good results compared to reference data.  The high 

producer and consumer 

accuracies for the 

segmentation of non-

building points are 

partially a result of the 

study area containing 

significant forested 

areas compared to 

residential areas.  The 

large number of 

reference non-building 

points compared to 

building points also 

contributed to the high 

overall accuracy for the 

building segmentation 

procedure.  If the study 

area was limited to the 

extent of area covered 

by buildings, the accuracies for the detection of non-building points would be lower, resulting in 

a lower overall accuracy.  

Nonetheless, the results indicate 

the usefulness of the approach 

when segmenting LiDAR point 

clouds in an environment 

containing large vegetation only 

areas intermixed with residential 

areas (i.e. the WUI).  In addition, 

the producer and consumer 

accuracies for the segmentation of 

building points are likely lower 

than the actual accuracies.  These 

lower accuracies are due to the method of classifying the reference data points.  Reference 

building points were determined by classifying all LiDAR points within the reference building 

boundaries as building 

points.  This method, 

consequently, included 

vegetation returns 

covering buildings and 

likely decreased the 

accuracies associated with 

the segmentation of 

building points.  A 

number of buildings in the 

study area were 

surrounded by vegetation.  

Qualitative visual 

Table 7 Comparisons between LiDAR and field measured 

maximum building height. 

Measurement 

Technique 

Mean 

(meters) 

Mean Square 

Error (m2) 

Root Mean 

Square Error 

(meters) 

LiDAR 5.75 

0.79 0.89 

Manual 5.11 
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Figure 9  Field measured versus LiDAR measured building corner 

heights. 

Table 8 Comparisons between LiDAR and field measured 

building corner height. 

Measurement 

Technique 

Mean 

(meters) 

Mean Square 

Error (m2) 

Root Mean 

Square Error 

(meters) 

LiDAR 3.33 0.06 0.25 

Manual 3.28 
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examination of these buildings as shown in Figure 10 indicates the segmentation procedure 

performed well in differentiating vegetation returns from building returns for these situations.    

Additionally, the use of the 

input vegetation grid played a 

significant role in not 

erroneously segmenting 

returns as buildings in 

vegetative areas where the 

number of segmented 

building points increased by 

30% when the vegetative 

binary grid was not input to 

the segmentation procedure.  

The use of the vegetation 

mask with the specified 

parameter values represents 

an optimized configuration 

for the study area.  If no 

vegetation mask is available, 

adjustment of certain 

parameters can reduce the 

number of erroneously 

segmented building points in 

vegetative areas with minimal reduction in segmentation of actual building returns.  The use of 

the vegetative mask also resulted in the masking of certain returns from buildings when the 

vegetative pixels represented deciduous trees covering buildings.  This is because the LiDAR data 

was collected in leaf-off conditions where the first return, in some cases, was able to penetrate 

through the deciduous leaf-off branches.  The proposed use of the vegetation mask, therefore, 

might be aided by the differentiation between deciduous and conifer trees when LiDAR data is 

collected in leaf-off conditions.   

Finally, the proposed laser pulse filter reduced the vegetative points incorrectly segmented as 

building points by about 20% when considering only multiple return pulses.  This indicates this 

filter is appropriate for use in environments containing significant amounts of vegetation.  This 

use of this filter in a more urban environment containing tiered buildings, however, might not be 

appropriate due to this filter removing building edge points from tiered buildings.  The removal of 

these building points is unlikely to have a detrimental effect on the extraction of the building 

boundaries as these points typically represent the interior of buildings.  The removal of these 

building points, however, could affect height values associated with the building points for tiered 

buildings.      

2.6.2 Boundary Tracing and Raster Height Method 

Both the boundary tracing and raster height methods showed promising results in extracting 

building boundaries from a segmented LiDAR point cloud.  The lower detection rate (i.e. 
producer’s accuracy) associated with these methods compared to the producer’s accuracy 

associated with the segmentation algorithm is largely due to the area threshold employed.  Some 

extracted building footprints were removed from the accuracy assessment because the extracted 

area represented an area below the threshold employed (i.e., 10 m
2
).  These removed footprints, in 

some cases, actually represented portions of larger buildings where only part of the building 

returns were classified.  The classified building points were included as being correct in the 

Building

Non-Building
Ground

 

Figure 10 Segmented building points covered by vegetation. 
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segmentation accuracy assessment, but these points did not produce an adequate footprint to be 

considered correct for the extraction accuracy assessment.  This indicates that smaller extracted 

footprints should be examined as areas for possible manual cleanup.   

Also, many of the missed building 

footprints had an area less than the input 

area threshold.  The distribution of the 

areas of missed building footprints for 

the boundary tracing method is shown in 

Figure 11 with the distribution of the 

areas of missed building footprints for 

the raster height method shown in Figure 

12.  As indicated by Figure 11 and 12, 

the majority of missed building 

footprints have an area less than 30 m
2 

for the boundary tracing method and 20
 

m
2 
for the raster height method.  The 

boundary tracing method had five 

missed footprints with areas greater than 

100 m
2
.  These buildings contained 

segmented building points, but were 

only partially traced due to irregularities in the grouped building points.  In addition to these 

missed buildings, the higher detection rate associated with the raster method can be accounted for 

by the raster method having an increased extracted footprint area.   This is shown by the higher 

average matched overlay, the lower average area omission, the higher average area commission 

and the lower average area difference in the raster height method.  This increased area for 

extracted footprints from the raster height method is accounted for by the differences in methods.  

Any interpolation of points will provide a larger area than an exact boundary tracing of these 

points.  The magnitude of difference in area related measurements between the boundary tracing 

and raster height method will 

likely increase the larger the 

pixel size of the created nBSM. 

Both the boundary tracing and 

raster height methods showed 

relatively large missed portions 

of reference buildings as 

demonstrated by the area of 

omission values of 23% and 

18% for the boundary tracing 

and raster height methods, 

respectively.  These large error 

of omission values also resulted 

in large values for average area 

difference (i.e., 19% and 14 % 

for the boundary tracing and 

raster height methods, 

respectively).  While the effect 

these differences might have on 

WFDS runs is unknown it might 

be significant.  Qualitative evaluation, however, of the reference building footprints against the 

Pictometry imagery shows that in some cases there was a tendency for the digitizer to 
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Figure 11  Distribution of missed building areas for 

the boundary tracing method. 
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Figure 12 Distribution of missed building areas for the 

raster height method. 



33 

 

overestimate building area as shown in Figure 13.  This tendency to overestimate the building 

area might be due to the fact that reference footprints were digitized from the NAIP imagery 

before the Pictometry imagery was available.  The NAIP imagery was of a coarser resolution and 

might have caused the digitized building area to be larger due to mixed pixels and resulted in the 

larger numbers for area of 

omission and area difference.  

While the small area of 

commission errors indicates that 

the extraction methods are not 

delineating large areas outside the 

reference footprint, these values 

might, however, increase if the 

area exaggeration in the digitized 

footprint was reduced.  It is also 

likely the case that the traced 

boundaries will generally produce 

building footprints that are smaller 

than reference footprints.  This 

tendency is probably a function of 

point density with lower point 

density datasets having less of a 

probability of exactly identifying 

the building edge.  The tendency 

for the raster height method to 

extract a larger area footprint 

compared to the boundary tracing 

method could result in this 

technique being more useful in 

accounting for the missed building 

edges in lower point density 

datasets.   

The large difference between 

correctness rates (i.e. consumer’s 

accuracy) for the boundary tracing 

and raster height methods is again 

likely caused by the difference in 

techniques between the two 

extraction methods where the 

raster based interpolation 

technique will produce polygons with a larger area.  The tendency for the raster height method to 

produce larger polygons, on average, resulted in more polygons that exceeded the input area 

threshold compared to the boundary tracing method.  This resulted in a lower correctness rate for 

the raster height method compared to the boundary tracing method because there were more 

erroneous polygons extracted. 

Additionally, there was a large difference between the average perimeter differences of the 

boundary tracing and raster height methods.  The large value for the average perimeter difference 

of the raster method is due to the footprints being derived from raster data.  Raster data represents 

square pixels where the conversion of building pixels to a vector dataset produces jagged edges as 

shown in Figure 14.  The jagged nature of the raster height method extracted footprints might be 

irrelevant to inputs for WFDS as all input building footprints are converted to grids for WFDS.  

 

Figure 13 (A) Digitized footprint over-laid on Pictometry 

imagery, and (B) Digitized footprint over-laid on NAIP 

imagery showing mixed pixels and possible cause of area 

exaggeration. 
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The small value for the average perimeter difference of the boundary tracing method, however, 

might indicate the methods ability to correctly extract the shape of the buildings despite the 

extracted area being underestimated.        

2.6.3 Building Heights 

Overall the LiDAR measured 

building heights showed good 

correspondence to the field 

measured building heights.  The 

LiDAR measured building corners 

showed a better correspondence 

with the field measured data 

compared to the LiDAR measured 

maximum building heights.  In both 

cases the RMSE were less than 1 

meter where most WFDS 

experiments over larger scales 

would have resolutions of 1 meter 

or greater.  This indicates the 

LiDAR performs as well as the field 

measurements for determining 

building height, with regard to inputs for WFDS.  In addition, field measurements of building 

heights are labor and time intensive to obtain and essentially impractical over any large area. 

The poorer results for the LiDAR measured maximum building height is thought to be due to 

human measurement error.  This is not shown conclusively but evidence is provided in the fact 

that the means of the LiDAR measured maximum building height is greater than the field 

measured maximum building height.  It would be expected that the LiDAR measured maximum 

building height would typically be lower than the actual maximum building height due to the 

unlikely probability of the laser pulse hitting the exact roof apex.  A comparison of the means 

shows there is a tendency for the LiDAR to over estimate building height.  It is possible that this 

overestimation using LiDAR data is caused by improper segmentation of ground points or errors 

introduced by interpolation of these ground points.  If errors with ground classified points or 

interpolation errors caused errors in building heights, a larger magnitude of difference between 

the mean measured building corner heights would be expected than what is shown in Table 8.  

This is not the case and while the mean of the LiDAR measured building corners is greater than 

the mean of the field measured building corners, the magnitude of difference is smaller.  In 

addition, it is expected that the LiDAR would tend to overestimate building corner height, for 

sloped roofs
4
, due to the unlikely probability of the LiDAR pulse hitting the exact building corner.       

Finally, every building corner that was covered by conifer vegetation did not have any LiDAR 

building returns below the vegetation.  LiDAR returns underneath deciduous vegetation did, 

however, have LiDAR building returns.  There were only 8 building corners surrounded by 

conifer vegetation with 6 building corners surrounded by deciduous vegetation.  This small 

sample size does not lead to quantitative conclusions about the ability of LiDAR to penetrate 

through dense vegetation, but qualitative evaluation of other areas shows similar results.  It is 

possible, however, through manual intervention to add points representing these missed building 

corners based on assumptions derived from other building returns.   

                                                 
4
 All of the roofs in the study area were sloping. 

 

Figure 14 Jagged nature of raster height extracted 

footprints. 
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2.7 Conclusion 

Section 2 of this report presents an algorithm for automatic extraction of the three dimensional 

distribution of buildings from LiDAR and multispectral data.  The LiDAR segmentation 

algorithm first employs thinning algorithms that utilize vegetation grids derived from 

multispectral data as well as incorporating a custom laser pulse filter.  Both of these thinning 

algorithms improve results of the plane fitting segmentation procedure, which ultimately 

segments the LiDAR above ground points to building and non-building categories.  The results of 

this segmentation algorithm compared against reference data indicate the usefulness of this 

algorithm in segmenting building points in a WUI environment.  Additionally, the unique 

capabilities of the tools developed to perform the building segmentation allow for rapid cleanup 

of the data and improved results. 

From the segmented point cloud, two building boundary determination methods (i.e. boundary 

tracing and raster height) are evaluated against reference data.  Similar results are obtained for 

each method where both methods underestimated building area.  This underestimation might, in 

part, be due to an overestimation of building area during the manual digitization process.  The 

raster method better represented the area of the reference footprint compared to the boundary 

tracing method.  The raster method, however, had a lower correctness rate due in part to the larger 

area of extracted footprints and subsequent inclusion of more polygons above the input area 

threshold.  

The use of one method over another for deriving inputs to WFDS likely depends on the 

environment and the characteristics of the input LiDAR data.  When point densities are low the 

raster method might account for some of the under estimation of building area.  With high point 

density datasets the boundary tracing method might not have as significant of an underestimation 

of building area and might produce better correctness rates.  The raster method is also much 

simpler to implement and requires less processing time than the boundary tracing method.  The 

shape similarities between the extracted and reference footprints were, however, not examined in 

this study, except rudimentarily in the average perimeter difference measure.  This measure 

showed better results for the boundary tracing method.  The effect changes in building footprint 

shape would have on WFDS outputs is unknown but suspected to be negligible if appropriate 

three dimensional areas are described.  If shape proved to be important, the boundary tracing 

method could prove superior and adjustments made to account for underestimation of building 

area.  Both techniques showed excellent promise for deriving building information inputs to 

WFDS.  The techniques might also prove complimentary where different methods can be used for 

different environments and data characteristics.    

Comparisons between field measured and LiDAR measured building heights were also promising 

and likely within the resolution of most WFDS landscape scale model runs.  Additionally, it 

might be the case that the LiDAR measured building heights are more consistent and less prone to 

human error but further study is required to confirm this.  The comparisons made in this report do 

not account for all measurement errors inherent in each system but the techniques used here for 

field measurements are felt to be more prone to human error than LiDAR measurements derived 

from quality equipment and trained operators.  This study also confirmed recent findings by 

Cheuk and Yuan (2009) where lack of laser penetration through vegetation is a potential error in 

the determination of building height.   

Overall the use of LiDAR and multispectral data for automatic extraction of building information 

in a WUI environment appears to be the only practical method over any large area.  The effect the 

reduced area of the automatically extracted footprints might have on WFDS model runs needs to 

be examined, however, to determine if the accuracies presented in this section are sufficient for 

producing reliable WFDS outputs.  If the reduction of area in the LiDAR extracted footprints 
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could be quantified, adjustments could be made for WFDS inputs.  Additionally, other sensitivity 

analyses of WFDS would aid in the interpretation of these results in the context of deriving 

building information inputs for WFDS.  Finally, the algorithms presented here have applications 

beyond WFDS and could be used for hazard and property assessments, urban growth analysis and 

other areas.  Future efforts beyond WFDS sensitivity analyses should focus on examination of 

differences in building segmentation and footprint extraction from datasets with varying point 

densities; improvements to the plane fitting technique to measure the orthogonal distance to the 

identified plane instead of the vertical distance; distinct segmentation of off-roof features, 

building sides and building edges; and orthogonalization of building footprints to produce spatial 

representations that better match the shape of the actual building.   
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Section 3.0 Tree Extraction in the WUI 

Abstract 

The automatic extraction of tree stem locations from remotely sensed data can be of great benefit 

to various land management disciplines.  Many organizations and programs such as the 

Continuous Forest Inventory (CFI) program survey tree stem locations throughout the country.   

Accurate and automatic extraction of tree stem locations with associated attributes can also be 

used to characterize the WUI and as inputs for fire behavior fuel models.  This section presents 

an automatic approach for the extraction of tree stem locations and associated attributes of 

height above ground, crown radius and height to live crown (HLC).  This work is conducted in 

the context of deriving inputs for the Wildland Fire Dynamics Simulator (WFDS).  The tree 

extraction algorithm operates directly on the raw LiDAR point cloud classified for building 

returns.  The algorithm derives the horizontal and vertical coordinates of the potential tree stem 

location with attributes for crown width and HLC.  The accuracy of the tree extraction algorithm 

is assessed against surveyed trees in three urban plots and five wildland plots in Worley and 

Plummer, Idaho.   

The tree extraction algorithm correctly extracted 27% to 97% of the trees found in the various 

study areas.  Generally, the algorithm did very well at extracting dominant trees but in most 

cases missed sapling trees or those trees with a diameter at breast height less than 4 inches.  

Additionally, the algorithm did not extract trees whose tree tops where within the canopy of a 

taller tree.  LiDAR derived tree heights compared well to surveyed tree heights with root mean 

square errors (RMSE)  varying between 0.9 to 2.10 meters for the different study sites with the 

means of the LiDAR derived heights tending to be less than the surveyed tree heights.  This 

discrepancy is due in part to the time difference between the ground and LiDAR surveys (i.e., two 

years) and the well documented trend of LiDAR to underestimate tree height.  Comparisons 

between LiDAR derived crown radius and surveyed crown radius showed RMSEs between 0.62 

and 1.20 meters with the means for the LiDAR derived crown radii tending to be less than the 

surveyed crown radii.  This is likely due to a tendency for the crown radii algorithm to 

overestimate crown radii.  RMSEs for comparisons of HLC varied between 1.09 and 6.92 for the 

various study sites.  The algorithm did not extract HLC from the LiDAR data very well possibly 

due to the inability of the algorithm to distinguish between dead and live branches as well as the 

inability of the algorithm to differentiate returns from different trees.  Results from the tree 

extraction algorithm can be enhanced through manual editing and the potential for using LiDAR 

for deriving tree inputs to WFDS is demonstrated in some cases.  Nonetheless, examinations of 

other methods for deriving the 3D structure of vegetation for inputs to WFDS are recommended.  

3.1 Previous Work 

This study stems from the need for the efficient and accurate quantification of the three 

dimensional distribution of vegetation for inputs into WFDS.  WFDS takes as inputs the 

horizontal and vertical extent of vegetation as well as material properties for the vegetation of 

interest.  Vegetation can be input into WFDS as points with values specified for the horizontal 

and vertical coordinates, crown width, crown base height, diameter at breast height, crown bulk 

density and other physical properties of the vegetation under consideration.  Alternatively, 

vegetation can be input into WFDS as rectilinear elements where each 3D grid cell contains the 

same attributes as described above.  As with building extraction, remote sensing provides an 

efficient means of deriving some of these types of vegetation information.  This section focuses 

on the extraction of tree stem locations as points with associated attributes of crown radius, HLC 

and tree height.  
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Techniques to estimate vegetation characteristics from remotely sensed data have been used for 

many years with the estimation of forest biophysical parameters historically occurring from 

passive optical sensors (Hall et al, 2005).  A combination of field data and aerial photography has 

traditionally been used to map crown bulk density, crown closure, and canopy height (Riano et al., 

2003).  The use of empirical methods with passive sensors has been used to map crown closure, 

above ground biomass, crown bulk density, and structural stage classes (e.g., Cohen and Spies, 

1992).   These empirical methods have been shown to be non-linear where above ground biomass 

saturates at approximately 100 Mg/ha (Cohen and Spies, 1992).  Additionally, passive optical 

sensors cannot discriminate the vertical structure of biomass (Hall et al, 2005).  Finally, the 

detection of individual tree crowns (ITC) has been achieved from aerial imagery (e.g. Gougeon, 

1997) and satellite imagery.  

Recent technological developments have resulted in the increased availability of active sensor 

data such as LiDAR, which provides 3D data. In addition, LiDAR does not saturate at high 

biomass (Riano et al., 2003).  LiDAR data could become the main technology for the mapping of 

forest biophysical variables (Thomas et al., 2006) due to the high degree of accuracy 

demonstrated in mapping these variables (e.g. Lim and Treitz 2004; Hopkins et al. 2005; 

Anderson et al., 2005).  Forest biophysical variables such as tree height and crown width have 

been measured at the stand level (Hall et al., 2005), the plot level (Holmgren et al., 2003; Hyyppa 

et al., 2001; Lim and Treitz, 2004), and the individual tree level (Chen et al., 2006; Coops et al., 

2004; Holmgren and Persson, 2004; Persson et al., 2002; Roberts et al., 2005).  Studies focusing 

on deriving crown base height and crown bulk density are fewer and typically use allometric 

relationships or statistical inference to estimate these variables (Popescu and Zhao, 2008).  Many 

of these methods (e.g., Anderson et al., 2005) derive forest biophysical variables using a raster 

data model where each cell in the raster represents a 3D area of the land surface (Perry, 1998).  It 

is less common to characterize the vertical space of forest canopies and attempts focus on voxel
5
 

based approaches (Chasmer et al., 2004; Parker, 1995; Weishampel et al., 1997) and height bins 

(Naesset 2004; Popescu and Zhao, 2008).  Finally, many studies have examined the synergistic 

use of active and passive sensors for vegetative mapping (Hill and Thomson 2005; Packalen and 

Maltamo 2007) where the combination or fusion of passive and active sensor data can be 

demonstrated to improve classification accuracy (Walter, 2005). 

LiDAR has also been used for the extraction of tree stem locations (e.g. Rowell et al., 2006; 

Popescu and Kini, 2004; and Solberg, 2006) where the LiDAR surface points are typically 

interpolated to a raster data set termed a canopy height model (CHM).  Both Rowell et al. (2006) 

and Popescu and Kini (2004) use a local maximum algorithm and user input relationships 

between tree height and crown width to extract tree stem locations.  Solberg (2006) also uses a 

local maximum to identify potential tree stem locations where a local maximum is defined as a 

grid cell having higher Z values than its eight neighboring grid cells.  Falkowski et al. (2006) use 

spatial wavelet analysis (SWA) to extract tree stem locations independent of any allometric 

relationship between tree height and crown width.  Results reported by Falkowski et al. (2006) 

compared favorably to those described in Popescu and Kini (2004).  The use of the raw point 

cloud of LiDAR data has also been used for the extraction of tree stem locations.  Barilotti et al. 

(2009) used a morphologic analysis of the laser point distribution to identify single tree stem 

locations.  The use of cluster analysis was used by Morsdorf et al. (2003) to identify individual 

tree stem locations.    

Popsecu and Kini (2004) used a median filter on the CHM along with fitting a fifth degree 

polynomial to crown profiles corresponding to local maximum to calculate crown width.  The 

local minimum of the fitted polynomial were determined and the distance between these 

                                                 
5
 In WFDS terms a voxel can be thought of as a three-dimensional grid cell. 
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minimum calculated to determine crown width.  Crown base height was not calculated by 

Popescu and Kini (2004) but in Popescu and Zhao (2008) a voxel based method combined with 

Fourier and wavelet filtering and a similar polynomial fitting technique was used to determine 

crown base height.  Solberg (2006) used a region growing algorithm beginning with the identified 

local maximum to calculate crown width.  Crown base height was then calculated by Solberg 

(2006) using the deciles of the height distributions with crown base height being determined from 

the decile with the largest distance to the neighboring decile.  In Falkowski et al. (2006) the size 

of the wavelet allows for direct calculation of the crown width.     

3.2 Methods 

The inputs and workflows used for the identification of tree stem locations and associated 

attributes in this study are shown diagrammatically in Figure 15.  The tree stem extraction 

algorithm takes as inputs a bare earth DEM, canopy height model (CHM) and LAS file with 

building points classified.  User inputs include an allometric relationship between tree height and 

crown width, minimum tree height, minimum number of points required for a tree stem location, 

minimum and maximum crown widths, a canopy search radius length, and the minimum number 

of correct profiles.  All these inputs will be discussed in detail in the sections below.  The tree 

stem extraction beginnings with an initial thinning algorithm to remove points clustered together 

at the end of the scan line.  A simple minimum tree height filter is then employed with the 

identification of local maximum occurring.  The crown width algorithm proceeds with the tree 

stem extraction concluding with the height to live crown algorithm.  Tree stem locations with 

associated attributes are output to a user designated text file.    

3.2.1 Local Maximum Filter 

LiDAR returns at the end of a scan line are often clustered where this clustering will sometimes 

result in many points returned from pole features such as telephone poles.  In order to remove 

these points from consideration and alleviate the potential of extracting pole features as trees an 

initial thinning algorithm is employed.  This thinning algorithm searches for points clustered in a 

small radius with a large range in height values.  This study used a search radius of 0.5 meters, a 

minimum number of points of 5 and a minimum height range of 5 meters.  With these pole points 

removed an initial minimum tree height filter is employed to exclude potential tree stem locations 

lower than a user input height threshold.  The height threshold used for each study site was the 

minimum tree height surveyed for that location.  The smallest tree surveyed in the study was 1.14 

meters tall. 

With the LAS file thinned as described above, the identification of potential tree stem locations 

proceeds.  A local maximum filter is employed that takes as an input an allometric relationship 

between tree height and crown width.  This study used an allometric relationship from Tiede et al. 

(2005) that was not calibrated for specific species or tree structures.  This relationship is shown in 

the equation below: 

CW = 1.54 + (0.123*TH)   (13) 

where 

 CW = crown width, and 

TH = tree height. 

The developed tree extraction tool is capable of taking up to a third order polynomial representing 

the allometric relationship between tree height and crown width. 

The motivation for the use of a local maximum filter comes from Popescu and Kini (2004).  This 

algorithm, however, operates directly on the point cloud of data instead of the interpolated surface  
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points or CHM as in Popescu and Kini (2004).  The identification of local maximum proceeds by 

iterating through each point in the LiDAR point cloud and if the point in the iteration is the 

highest point in the variable search window it is flagged as a tree top.  In order to filter out local 

maximum, which represent pole features, the number of points below the identified local 
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Figure 15 Tree stem extraction inputs and workflow. 
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maximum point is recorded and if this number of points is below the user input threshold, three 

points in this study, the search window is expanded by 33% (Personal Communication, Eric 

Rowell).  If new points are added such that the total number is greater than the threshold the point 

is flagged as a tree top.  This is an advantage of using the point data directly compared to the 

canopy height model (CHM), which cannot determine points beneath the identified local 

maximum.  This is the main difference between the algorithm used by Popsecu and Kini (2004) 

and the algorithm presented in this paper for identifying potential tree stem locations.  Once the 

potential tree stem locations have been identified the derivation of crown radius begins.   

3.2.2 Crown Radius Algorithm 

The approach for determining crown radius uses an input CHM.  As described in Popescu and 

Kini (2004) performing a median filter on this CHM might help improve results.  This is because 

the median filter will 

remove anomalies present in 

most canopies while 

preserving the edge of the 

canopies under 

consideration.  This study 

used a 3X3 median filter on 

the input CHM implemented 

in ENVI 6.3.  While the use 

of a smoothed CHM was 

derived from work 

conducted by Popescu and 

Kini (2004) the approach for 

determining crown radii 

used in this study is different 

and is independent of the 

input allometric relationship 

between tree height and 

crown width.  For each 

identified potential tree top 

point a traverse along the 

crown profile in all 8 

cardinal directions is 

conducted as shown in 

Figure 16.  Each value in the 

CHM is recorded along the 

traverse and if the next value 

of the CHM is greater than 

the previous value or if the 

value of the CHM is less 

than the user input minimum 

tree height the location is 

marked.  If the above 

situation occurs 

consecutively over an input 

distance specified in the input canopy search radius length, the initially flagged location is 

determined to be the end of canopy point for the particular direction of the traverse.  This study 

used a canopy search radius length of 2.5 meters.  The difference between the flagged values in 

 

Figure 16 Traverse along the canopy profile to determine end of 

crown for potential tree stem locations. 
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the north and south direction, or the east and west direction are calculated.  In addition, the CHM 

profiles are also traversed in the Southeast/Northwest and Northeast/Southwest directions and the 

crown radii in these directions are calculated as above.  These 8 crown radii values are averaged 

to determine the crown radii for the potential tree stem location under consideration.  This 

algorithm will sometimes result in a large overestimate of crown radius. This occurs when the 

traverse of the canopy profile extends into another trees canopy while continuing to decrease in 

height.  Each tree is checked to see if its crown encompasses other trees to adjust for this error.  If 

4 or more trees are encompassed within the crown of a particular tree, the crown radius in the 

particular direction of the encompassed tree is adjusted to be the midpoint between the original 

tree and the encompassed tree.  In order to prevent the CHM traverse from exceeding the 

potential maximum crown width found in the area of interest, an input maximum crown width is 

entered where if exceeded the CHM traverse will be terminated.  This study used a maximum 

crown width of 24 meters.  Additionally, a minimum crown width is also input to again alleviate 

misidentification of pole features not filter out by the procedures described above.  This study 

used a minimum crown width of 1 meter.   

In addition to the above, a method to remove the edge of canopy or mid canopy points incorrectly 

extracted as trees has been developed.  Due to the complex nature of tree canopies a branch or 

portion of the canopy, which spikes above the rest of the canopy for the particular tree under 

consideration, is often identified as a local maximum and incorrectly output as a tree stem 

location.  These incorrectly identified tree stem locations often occur at the edge of a stand of 

trees, a situation that essentially defines the WUI.  An attempt has, therefore, been made to 

identify these points concurrent to measuring the crown radii of the tree.  This is accomplished by 

recording the value of the CHM for the particular point identified as a potential tree top location 

during the traverse of the CHM profile.  For the next four values of the CHM in the traverse it is 

determined if the majority of these values are greater than the initial CHM value.  If this condition 

is met the particular direction of the traverse is flagged.  This value is input to the algorithm as the 

minimum number of correct profiles.  This study used a minimum number of correct profiles of 7 

indicating that the above described scenario can only occur once in the eight canopy profile 

traverses for the originally identified tree stem location to be output as a final tree stem location.   

3.2.3 Height to Live Crown Algorithm 

The algorithm used to determine HLC is similar to that described by Holmgren and Persson 

(2004) where all laser points below a particular flagged tree top point and within the identified 

crown width as described above are grouped into 0.5m height bins.  Each bin is categorized as 0 

or 1 where bins with a 0 value have less than 1% of the total number of non-ground laser points 

within all the bins and all others have a 1 value (Holmgren and Persson, 2004).  The HLC was 

then determined as the distance from ground of the lowest laser data point above the highest 0 

classified bin found.  Some modifications are made to the above described algorithm.  The first 

modification is a result of tree crown radius not always being consistent in all directions.  

Grouping all points below the flagged tree top point and within the crown width could, 

consequently, result in incorrect estimates of crown base height.  To account for this the location 

below flagged tree top points is divided into four quadrants and the average crown radii for each 

particular quadrant is used to determine the laser points within that quadrant.  In addition, instead 

of using the lowest laser data point above the highest 0 classified bin found, the bins are searched 

for a continuous occurrence, for a threshold number of times, of 0 value bins.  When this occurs 

the lowest laser point in the next 1 value bin, after the occurrence of the 0 value bins, is marked as 

the crown base height.  This step is conducted in an attempt to alleviate the influence of under-

story vegetation. 
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3.3 Results 

This section details results for the accuracy assessments of the tree stem extraction algorithm with 

associated attributes.  The accuracy of the automatically extracted tree stem locations and 

associated attributes were compared against tree stem locations and associated attributes surveyed 

on the ground during the 

summer of 2007.  A total 

of eight plots were 

surveyed representing 

urban and wildland forest 

stands.  Three study sites 

were located in an urban 

setting and the other sites 

were located in a wildland 

setting.  The Worley Park 

study site shown in Figure 

18 represents a typical 

urban scene found in 

many WUI environments.  

This study site contained 

three deciduous trees, 57 

conifer trees, four shrubs, 

six telephone poles, four 

basketball hoops, four 

light poles, one totem pole, 

and four pieces of 

playground equipment.  The Plummer High School study site is shown in Figure 17 and contains 

41 conifer trees with a building and several telephone poles on the edge of the study site.  The 

Plummer Housing study site 

shown in Figure 19 

contained a mix of 

deciduous and conifer trees.  

The five wildland tree 

extraction study sites are 

shown in Figure 20 and 

Figure 21.  These plots were 

11.3 meter diameter circular 

plots coinciding with 

continuous forest inventory 

(CFI) plots.  In all, the 

above study sites contained 

Ponderosa Pine, Douglas 

Fir, Western Red Cedar, 

Aspen, Grand Fir, Western 

Red Hemlock and Black 

Locust tree species.  These 

trees ranged from fully 

mature trees to saplings 

categorized by a diameter at 

breast height (DBH) less 

than 4 inches.  

 

Figure 17 Plummer High School tree extraction study site. 

 

Figure 18 Worley Park WUI tree extraction study site. 
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The location and height above ground of each tree stem location was surveyed using a Trimble 

GeoXH sub-foot accuracy 

GPS receiver along with a 

Laser Technology Inc. 

ForestPro Laser Range 

Finder and Electronic 

Compass.  The laser range 

finder was mounted on a 

tripod and the height of 

each tree was measured 

using standard procedures 

for the instrument.  The 

distance from the location 

of the tripod to the 

respective tree stem 

location was also 

determined using the laser 

range finder with the 

bearing to the tree stem 

location measured using 

the electronic compass.  

The location of the tripod 

was recorded using the GeoXH GPS where the tripod was setup in a location free of obstructions, 

as practical, which might result in multi-path errors.  All GPS recorded points were differentially 

corrected to an accuracy of 

within 1 meter or less using 

the Trimble GPS Analyst 

Extension.  In many cases 

this required repeated 

measurements of the tripod 

locations, which were 

flagged in the field.  Using 

this information the location 

of the tree stem was 

determined as well as the 

recorded height associated 

with this location.  

Additionally, for each tree 

surveyed the HLC, DBH 

and crown radius were 

measured.  Crown radius 

was determined by 

measuring the major crown 

width and minor crown 

width of each tree, 

averaging the two 

measurements and dividing the result by two.  HLC was measured using the ForestPro Laser 

Range Finder to measure the height above crown of the first live vegetation.  DBH was measured 

at 4.5 feet above ground using a diameter tape or d-tape. 

 

Figure 19 Plummer Housing tree extraction study site. 

 

Figure 20  Wildland tree extraction study sites (plots 38 and 

39_40). 
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Despite the high accuracy 

of the equipment used for 

surveying the tree stem 

locations it was sometimes 

difficult to precisely register 

the surveyed trees with the 

LiDAR extracted tree stem 

locations.  This is due to 

many factors including the 

combined inherent error of 

the raw LiDAR data with 

the GPS and laser range 

finder, the fact that the 

LiDAR observed tree top 

does not always coincide 

with the measured tree stem 

location at the base of the 

tree due to tree tilt and 

human error.  Consequently, 

a large amount of manual 

effort was required to re-

adjust the surveyed trees to the LiDAR extracted tree stem locations.  For some plots, due to the 

density of the trees, precise tree by tree comparison of the surveyed trees to the LiDAR extracted 

trees was not feasible and distributions were compared.  

3.3.1 Tree Stem Location Accuracy Assessment 

The accuracy assessment results for individual tree stem locations are shown in Table 9.  For each 

study site the percentage of 

correctly extracted trees is 

reported along with the 

number of false positives.  

The percentage of correctly 

extracted trees is determined 

by dividing the number of 

LiDAR extracted trees that 

coincide with a surveyed 

tree by the total number of 

surveyed trees in each plot.  

False positives are tree stem 

locations extracted from the 

LiDAR data that do not 

correspond to an actual tree 

stem location on the ground.  

The accuracy of the trees 

extracted from the Plummer Housing site listed in Table 9 is an approximation.  This is because 

the density of trees for the Plummer Housing site was too dense to allow for exact alignment of 

surveyed trees to LiDAR extracted trees on a tree by tree basis and the numbers were, 

consequently, estimated.   

 

Figure 21 Wildland tree extraction study sites (plots 33, 36 and 37). 

Table 9 Accuracy assessments for individual tree stem locations. 

Plot Correctly Extracted 

Trees  

False 

Positives 

Worley Park 97% (59 of 61) 5 

Plummer 

Housing 

~85% (~172 of 201) ~16 

Plummer High 

School 

85% (35 of 41) 1 

Plot 33 27% (9 of 34) 0 

Plot 36 37% (10 of 27) 1 

Plot 37 84% (16 of 19) 3 

Plot 38 83% (5 of 6) 7 

Plot 39_40 30% (14 of 46) 1 
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3.3.2 Tree Height Accuracy Assessment 

The accuracy assessment results for tree height are shown in Table 10.  Only those trees that were 

extracted correctly 

from the LiDAR data 

were considered in 

this comparison.  For 

each plot the average 

tree heights as 

recorded by the 

LiDAR tree 

extraction algorithm 

and the average 

surveyed tree heights 

are reported.  

Additionally, the 

MSE and RMSE are 

reported for each site.  

The Worley Park site 

had three gross 

outliers removed 

likely due to 

measurement error 

where the three trees 

were in the interior of 

the plot and caused 

difficulty in the 

measurement of height values.  The Worley Park site also had two trees that were removed 

between the time of the LiDAR survey and the ground survey.  The Plummer High School site 

had two gross errors removed likely due to measurement error where the recorded surveyed 

height value was erroneously high.  For all plots the average tree height for the surveyed trees 

showed a tendency to be higher than the average tree height for the LiDAR derived trees.     

A precise tree by tree comparison for the assessment of accuracy of the LiDAR derived tree 

heights in the Plummer Housing site was not possible due to the difficulty of aligning the LiDAR 

derived trees with the surveyed trees.  The distributions of the LiDAR derived tree heights and 

the surveyed tree heights were, consequently, compared as shown in Figure 22.  For the Plummer 

Housing site the LiDAR extracted trees that were determined to be false positives through visual 

analysis were removed from the comparison.  The mean height of the surveyed trees was 20.40 m 

and the mean height of the LiDAR extracted trees was 19.35.  The Plummer Housing plot also 

showed a tendency for the surveyed tree heights to be higher than the LiDAR extracted tree 

heights.    

                                                 
6
 Three gross outliers removed due to likely measurement error.  Additionally, two trees where removed 

between the time of the LiDAR survey and the ground survey. 
7
 Two gross outliers removed due to likely measurement error. 

Table 10 Tree height accuracy assessment results. 

Plot LiDAR 

Mean 

Height 

Surveyed 

Mean 

Height 

Mean 

Square 

Error (m
2
) 

Root Mean 

Square 

Error (m) 

Worley 

Park
6
 

32.76 32.95 4.41 2.10 

Plummer 

High 

School
7
 

28.46 29.59 3.20 1.79 

Plot 33 11.17 11.85 2.01 1.44 

Plot 36 3.62 4.44 0.83 0.91 

Plot 37 22.74 23.50 1.15 1.07 

Plot 38 19.38 21.38 4.63 2.15 

Plot 39_40 21.78 22.30 1.65 1.28 
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3.3.3 Crown Radius Accuracy Assessment 

The accuracy 

assessment results for 

crown radius are shown 

in Table 11.  Only those 

trees that were extracted 

correctly from the 

LiDAR data were 

considered in this 

comparison.  For each 

plot the average crown 

radius as recorded by 

the LiDAR tree 

extraction algorithm 

and the average 

surveyed crown radius 

are reported.  

Additionally, the MSE 

and RMSE are reported 

for each site.  For most 

plots the mean crown 

radii showed a tendency 

to be higher for the 

LiDAR extracted crown 

radii compared to the 

surveyed crown radii.  

The Worley Park site did not show this tendency.     

Comparison of Distributions (Measured Tree Height Versus LiDAR Tree Height)
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Figure 22 Distributions of LiDAR extracted tree heights and surveyed tree heights. 

Table 11 Crown Radius accuracy assessment results. 

Plot LiDAR 

Mean 

Crown 

Radius 

(m) 

Surveyed 

Mean 

Crown 

Radius 

(m) 

Mean 

Square 

Error (m
2
) 

Root Mean 

Square 

Error (m) 

Worley 

Park 
4.35 4.56 1.21 1.1 

Plummer 

High 

School 

4.07 4.02 0.78 0.88 

Plot 33 2.42 2.17 0.39 0.62 

Plot 36 1.91 0.93 1.36 1.16 

Plot 37 2.96 2.77 0.85 0.92 

Plot 38 4.19 3.73 0.76 0.87 

Plot 39_40 3.26 2.55 1.43 1.20 
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A precise tree by tree comparison for the assessment of accuracy of the LiDAR derived crown 

radii in the Plummer Housing site was not possible due to the difficulty of aligning the LiDAR 

derived trees with the surveyed trees.  The distributions of the LiDAR derived crown radii and the 

surveyed crown radii were, consequently, compared as shown in Figure 23.  For the Plummer 

Housing site the LiDAR extracted trees that were determined to be false positives through visual 

analysis were removed from the comparison.  The mean crown radius of the surveyed trees was 

2.58 meters and the mean crown radius of the LiDAR extracted trees was 2.66 meters.  The 

Plummer Housing site showed a similar tendency as the other plots for the LiDAR crown radii to 

be greater than the surveyed crown radii. 

 

3.3.4 Height to Live Crown 

The accuracy assessment results for HLC are shown in Table 12.  Only those trees that were 

extracted correctly from the LiDAR data were considered in this comparison.  For each plot the 

average HLC as recorded by the LiDAR tree extraction algorithm and the average surveyed HLC 

are reported.  Additionally, the MSE and RMSE are reported for each site.  In contrast to the 

height and crown radii comparisons, there was no apparent tendency for the mean HLC of the 

LiDAR extracted trees to be systematically different compared to the surveyed HLC.   

Comparison of Distributions (Surveyed Crown Width And LiDAR Crown Width)
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Figure 23 Distributions of LiDAR extracted crown radii and surveyed crown radii. 
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A precise tree by tree 

comparison for the 

assessment of 

accuracy of the 

LiDAR derived HLC 

in the Plummer 

Housing site was not 

possible due to the 

difficulty of aligning 

the LiDAR derived 

trees with the 

surveyed trees.  The 

distributions of the 

LiDAR derived HLC 

and the surveyed 

HLC were, 

consequently, 

compared as shown in 

Figure 24.  For the 

Plummer Housing site 

the LiDAR extracted 

trees that were 

determined to be false 

positives through 

visual analysis were 

removed from the comparison.  The mean HLC of the surveyed trees was 7.82 meters and the 

mean HLC of the LiDAR extracted trees was 5.95 meters. 

Table 12 Height to live crown accuracy assessment results. 

Plot LiDAR 

Mean 

Height 

to Live 

Crown 

(m) 

Surveyed 

Mean 

Height to 

Live 

Crown (m) 

Mean 

Square 

Error (m
2
) 

Root Mean 

Square 

Error (m) 

Worley 

Park 
8.82 6.54 47.88 6.92 

Plummer 

High 

School 

6.10 5.91 29.39 5.42 

Plot 33 2.94 4.07 19.44 4.41 

Plot 36 2.09 1.65 1.19 1.09 

Plot 37 8.22 11.70 43.10 6.57 

Plot 38 2.42 4.21 7.11 2.67 

Plot 39_40 11.55 12.91 7.93 2.82 

Comparison of Distributions (Measured Height to Live Crown Versus 
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Figure 24 Distributions of LiDAR extracted HLC and surveyed HLC. 
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3.4 Discussion 

Results for the extraction of tree stem locations with associated attributes varied between sites.  

Many of the results can be cleaned up through manual intervention, thereby improving results.  

Manual cleanup for certain missed trees, however, is likely only possible when coupled with field 

data, particularly sub-dominant trees.  While the results varied from site to site the use of the 

algorithms in certain conditions certainly shows promise and can be used for various applications.  

The effect of point density was also not examined in this study and higher density LiDAR data 

sets will also likely increase the accuracy of results.    

3.4.1 Tree Stem Location  

The accuracy assessment results for 

the tree stem locations varied widely 

from site to site ranging from a low 

of 27% to a high of 97%.  This 

discrepancy in results is largely 

accounted for by the age class of 

species present in each site.  Those 

sites with low percentages for 

correctly extracted trees had a large 

number of samplings.  If saplings are 

removed from the analysis the plot 

33 will improve from 27% (9 of 34 

trees correctly extracted) to 66% (4 

of 6 trees correctly extracted).  Plot 

39_40 will improve from 30% (14 of 

46 trees correctly extracted) to 82% 

(14 of 17 trees correctly extracted).  

Plot 36 was dominated by sapling 

trees as shown in Figure 

25.  These saplings 

could serve as ladder 

fuels for wildland fire 

and the correct 

extraction of these types 

of trees could be 

important for fire 

modeling.  It is, 

however, possible 

higher density LiDAR 

data could improve 

these results for 

saplings but this was 

not assessed in this 

study. 

There are two other 

situations where the 

algorithm failed to 

correctly extract trees.  

As shown in Figure 26, 

 

Figure 25 Saplings in plot 36 that were not extracted well. 

 

Figure 26 Two trees incorrectly extracted as a single tree. 
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when two trees are very close together the algorithm will often extract one tree instead of two.  

The resultant crown width usually encompasses both trees so from a fire modeling perspective it 

is unknown the result of this type of incorrect feature extraction.  It is likely this situation would 

be alleviated to some extent with higher point density LiDAR data.  The algorithm also fails to 

extract trees whose tree tops are covered by the canopy of a taller tree.  It does not appear that 

higher point density LiDAR data would correct this situation.   

3.4.2 Tree Height  

The accuracy assessments for tree heights showed reasonable correspondence between the 

LiDAR derived tree height and the surveyed tree height.  The discrepancies where in part due to 

the time difference between the LiDAR acquisition (i.e. February 2005) and the ground surveys 

(i.e. summer of 2007).  Additionally, it is well known that LiDAR has a tendency to 

underestimate tree height.  This is due to the unlikely probability of the laser pulse hitting the 

exact apex of the tree crown.  Typically, the laser pulse will be returned from the shoulder 

portions of the tree crown, resulting in some underestimation of tree height.  Additionally, slope 

steepness can affect the resulting tree height.  It is also known that the accuracy of LiDAR data 

decreases with steep slopes and it is possible this or some other anomaly in the creation of the 

LiDAR derived ground surface could have resulted in a decrease in LiDAR derived tree height.   

3.4.3 Crown Radius 

The accuracy assessments for crown radius showed a tendency for the LiDAR algorithm to over 

estimate crown radius 

compared to ground 

measurements.  The cause 

of this over estimation is 

understood and portrayed 

in Figure 27.  In some 

circumstances, the traverse 

of the canopy profile will 

continue into the canopy 

of another tree while 

continuing to decrease in 

height.  While the 

algorithm attempts to 

account for this by 

considering the interaction 

of adjacent canopies this 

situation will still occur 

and result in a tendency to 

over estimate crown radius 

in some circumstances.  

This tendency was likely 

offset somewhat by the inability of the LiDAR data to measure overlapping canopies between 

two tree crowns.  Ground surveys, however, are able to measure crown radii that are overlapping 

between different tree canopies.  Additionally, examination of the LiDAR derived and ground 

surveyed mean crown radii at the Worley Park site does not show the same tendency as other 

plots.  This could possibly be due to the fact that the situation described above and portrayed in 

Figure 27 did not occur as frequently in Worley Park due to the openness of the tree stand.  The 

large discrepancies between LiDAR mean crown radii and ground surveyed crown radii in some 

plots such as plot 36 is likely due to the large number of saplings and the LiDAR algorithm 

 

Figure 27 The cause of over estimation of crown radius. 
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grouping many saplings into one tree, thereby resulting in a large over estimation of crown radii.  

Finally, for stand alone trees or trees on the edge of a stand it is likely that laser returns from the 

canopy might not portray the exact extent of the canopy due to the unlikely probability of the 

laser pulse being returned from the exact canopy edge.  Increased LiDAR point densities could 

alleviate this problem.      

3.4.3 Height to Live Crown 

The accuracy assessment results comparing LiDAR derived HLC to ground surveyed HLC 

showed large discrepancies between the two measures.  There did not appear to be any systematic 

tendency between the two measures among the different plots.  There are, however, some 

observations about the field data and LiDAR data that can be made.  First, LiDAR data cannot 

distinguish between live and dead vegetation.  While the intensity values of LiDAR data when 

averaged over some set area have shown an ability to distinguish between conifer and deciduous 

vegetation (e.g. Anderson et al. 2005), this ability at a single branch level would be difficult even 

at very high point densities.  Second, LiDAR data might have a tendency to over estimate HLC.  

This is due to the unlikely probability of the laser pulse hitting the exact lowest live branch at the 

lowest point from the ground.  This over estimation would be compounded in dense canopies 

where the laser pulse is intercepted by upper level branches before reaching the lowest vegetation.  

Next, the field measured HLC did not measure live crown beneath a respective tree that was from 

an adjacent tree.  LiDAR data cannot distinguish from which tree branch vegetation comes and 

would only consider the lowest returns as described in section 3.2.3.  The above factors could 

result in a combination of over estimation or under estimation depending on the circumstances.  

The combination of these factors could result in the observance of no systematic tendency 

between the LiDAR derived HLC and the ground surveyed HLC where certain plots had one 

factor occurring and other plots a different factor.     

3.5 Conclusions 

Section 3 of this report presents an algorithm for automatic extraction of tree stem locations with 

associated attributes of tree height, crown radius and HLC.  The tree extraction algorithm uses the 

common method of identifying local maximum based on allometric relationships between tree 

height and crown width.  This algorithm differs from previous algorithms in that it operates 

directly on the raw point cloud.  This has benefits, particularly in regards to tree extraction in a 

WUI environment that contains other features that could be confused with trees such as telephone 

poles.  The crown width algorithm is unique in the literature and has the advantage of being 

independent of the relationship between tree height and height to live crown.  The HLC algorithm 

is similar to previous algorithms presented in the literature. 

The accuracy of tree extractions from LiDAR data using the above described algorithm varied 

between plots.  Generally speaking the presented algorithm worked well in extracting dominant 

tree species in a well spaced stand of trees.  The algorithm will likely never identify sub-dominant 

trees that have tree tops completely encompassed by a dominant tree.  It is probably the case that 

no algorithm could identify these types of trees from LiDAR data.  Additionally, this algorithm 

will not identify sub-dominant trees in a distinct under-story from the dominant trees when the 

canopy of the dominant trees obscures the downward view of the sub-dominant trees.  In theory, 

the algorithm could be modified to account for this situation.  LiDAR derived tree heights and 

measured tree heights compared well given the time difference between measurement dates.  The 

crown radius algorithm also had mixed results and the tendency to over estimate crown width was 

identified.  The algorithm could be modified to alleviate this situation, thereby improving results.  

The worst results were seen with the HLC algorithm.  There are a number of factors that could 
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account for the poor results and likely further field data collection and analysis would be required 

to improve the algorithm. 

An important consideration when determining the effectiveness of LiDAR in deriving tree inputs 

to WFDS is the time and money it takes to survey this information on the ground.  Surveying 

trees for inputs to WFDS is likely impractical over any large area.  Additionally, vegetation could 

be input to WFDS as rectilinear elements and extraction of vegetation inputs to WFDS in this 

manner from LiDAR data could be simpler than precise tree by tree comparisons.  It is also 

important to understand what the reported discrepancies between LiDAR derived vegetation 

information and ground surveys means from a WFDS model output standpoint.  Various WFDS 

simulations might help to better understand this.  Nonetheless, in certain circumstances such as 

open, even-aged stands of trees the use of LiDAR and the above described algorithm shows 

promise for extracting tree inputs to WFDS.    
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Section 4.0 Fire Barrier Extraction in the WUI 

Abstract 
Fire barriers are an importance component of Wildland Urban Interface (WUI) assessments.  

They ultimately distinguish between combustible features and non-combustible features and can 

be used to analyze and quantify risks to individual structures as well as entire communities based 

on the presence/absence of fire barriers and their spatial relationship to each other.  This work 

will help in deriving inputs for the Wildland Fire Dynamics Simulator (WFDS) and can help to 

facilitate or refine fire modeling exercises. 

Utilization of an automated method for extracting fire barrier feature types was done using 

Feature Analyst software.  Several experiments were conducted to optimize isolating fire barrier 

feature types: feature extraction using different imagery resolutions and feature extraction using 

different band combinations. Overall accuracy is comparable between NAIP imagery (1 meter 

resolution) and Pictometry imagery (1 foot resolution) and 3 bands vs. the addition of a texture 

band.  The feature extraction software was successful at separating fire barrier feature types 

from combustible features showing automated methods for feature extraction has the potential for 

deriving WFDS inputs in a timely and efficient manner.  However, both users accuracy (errors of 

commission) and producers accuracy (errors of omission) was greater than desired when 

distinguishing between different fire barrier feature types, pavement features and gravel features.  

In particular, gravel features had high errors of commission (87-90%) and high errors of 

omission (48-79%) compared to pavement features (34-53% commission; 59-63% omission).  A 

reduction in error rates can be achieved with improvements to the software and changes to the 

methodology. 

4.1 Previous Work 

This study stems from the need for the efficient and accurate quantification of fire barriers for 

input into WFDS.  A crucial component of the WFDS model is the distinction of fire barriers 

from combustible material within a study area.  Depending on the region of interest different 

feature types may represent a potential fire barrier (e.g., roads, lawns, swimming pools, boulders).  

Two fire barrier feature types were identified for this project: pavement and gravel features.  

Feature extraction is a method where a user can 'extract' desired features from high-resolution 

imagery.  Each cell of the raster image is analyzed and classified according to feature type.  

Feature Analyst is a commercial feature extraction software system that leverages multiple object 

recognition attributes, using semi-automated to automated workflows, to accelerate the collection 

of features from imagery (Blundell, 1999).  Feature Analyst was used as the only feature 

extraction software through the whole data processing stage.  The key components of the Feature 

Analyst system includes workflow, user interface, and modeling approach for delivering 

automated feature extraction (AFE) capability to users collecting geospatial intelligence from 

satellite and aerial imagery sources (Opitz, 1996). 

Feature Analyst is an efficient tool to extract features from imagery.  In this exercise two layers 

were extracted (pavement and gravel features).  The multiple layers were dissolved into a single 

polygon feature layer representing a fire barrier.  The GeoWFDS fire model input grid layer is a 

three dimensional grid layer and a DEM was used to obtain height information for the fire barrier 

feature layer.  The fire barrier layer was used as a mask to clip the bare earth DEM resulting in 

raster layer that had both the fire barrier shape and height information.  Next, the GeoWFDS fire 

model exporting tool assigned the proper surface fuel values. The raster layer will be the final 

input layer into the WFDS fire model. 

4.2 Methods 

There are two methods for extracting critical objects in remotely sensed images: manual and 

automated methods.  In the manual method, the features are hand-digitized and manually 
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attributed.   Although the manual method is still the predominant method for geospatial data 

production, it involves high labor and costs as well a large time commitment.  The Feature 

Analyst approach to object-recognition and feature extraction is automated and overcomes these 

shortcomings by using inductive learning algorithms and techniques to model the feature-

recognition process, rather than explicitly writing a software program (Maloof, 1998; Burl, 1998).  

The user gives the system (computer program) a sample of training features from the image.  The 

system then automatically develops a model that correlates known data (such as spectral or spatial 

signatures) with targeted outputs (i.e., the features or objects of interest) (Blundell, 2006).  The 

learned model then automatically classifies and extracts the remaining targets or objects.  The 

accompanying workflow and metadata (information on spectral bandwidth, date and time stamp, 

etc.) can be used to quickly compose new models for changing target conditions such as 

geographic locations or hours of the day (Blundell, 2006).  This approach leverages the natural 

ability of humans to recognize objects in complex scenes (Blundell, 2006). 

4.2.1 Feature Analysis Workflow 

In the Feature Analyst system, the image analyst creates feature extraction models simply by 

classifying the objects of interest in a small subset of the image or images (Opitz and Blundell, 

1999).  Since the user is not required to be familiar with programming, a person with little 

computer knowledge can effectively create visual models for the tasks under consideration (Opitz, 

1999).  In addition, different users can focus on the different features of interest, with the system 

dynamically learning these features (Opitz, 1999).  The Feature Analyst workflow includes the 

following steps: 

 

1. Using the Feature Analyst standard (default) toolbar the GIS staff sets up a learning 

environment for features to be extracted.  First, samples of feature types representing fire 

barriers (e.g., pavement features) are manually digitized.  These samples serve as training 

examples for calibration when extracting a particular feature type from an image.  The 

learning algorithm uses the characteristics (i.e., reflectance) of each pixel within each 

sample to help derive a shapefile of the feature type of interest across the entire study 

area. Next, using a menu driven toolbar, learning tools are used to select the type of 

feature to be extracted (e.g., narrow linear features) and the imagery input bands (Figure 

28).   

 

2. Features are extracted using Feature Analyst software.  All of the learning parameters 

are set behind the scenes and are calibrated to increase the accuracy of the extraction 

results and reduce the noise.  Four types of feature runs were conducted for pavement and 

gravel feature types: extraction using NAIP imagery (1 meter resolution), extraction 

using NAIP imagery with an added texture band, extraction using Pictometry (1 ft 

resolution), and extraction using Pictometry with an added texture band.  Depending 

upon the input imagery the process took between 1 minute and 20 minutes to complete. 

 

3.  Results of the outputs are visually inspected.  Results were dependent upon the quality 

and resolution of the input imagery and how well the training samples represented the 

feature types.   

 

4. The GIS staff cleaned up the data.  Feature Analyst has built in cleaning tools but we 

found manually correcting mistakes by removing wrongly classified features and 

digitizing any missing features was just as time efficient as having the software complete 

the process.  This final step is essential for quality control but it also takes the most time 

to complete.  
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5.  An accuracy assessment was completed to evaluate the performance of the feature 

extraction software.  A comparison was made utilizing different configuration settings for 

the software. 

 

 

Figure 28 Example Interface of Feature Analyst Software 

 

4.3 Results 

This section details results for the two methods of extracting fire barrier feature types.  The 

accuracy of features extracted using NAIP imagery was compared with using higher resolution 

Pictometry imagery and the input image.  Also, the accuracy of automatically extracting 

pavement and gravel features using a reflectance band was compared against extracting features 

using both a reflectance band and a texture band.   

4.3.1 Visual Inspection of Results 

Inspection of pavement derived features showed a high degree of agreement between NAIP 

extracted features and Pictometry extracted features.  The overall area for both datasets was 

similar and the degree of overlap was strong.  Areas of disagreement mostly occurred in non-

pavement areas that were misclassified by either of the two datasets.  Also, Pictometry had more 

refined results compared to the coarser NAIP imagery (Figure 29).  This came as no surprise 

because of the differences in resolution of the two imagery datasets.  Across the entire study area 
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it appears that commission errors for pavement features were larger with the Pictometry derived 

dataset versus the NAIP dataset.  There are a number of exposed bare earth patches that were 

incorrectly classified as pavement using Pictometry imagery.   

The addition of a texture band showed noticeable results for the NAIP derived dataset because 

areas of commission were significantly reduced.  However, addition of a texture band to the high 

resolution imagery showed no visual 

changes in the dataset nor significant 

changes in errors of commission or 

omission. Overall Feature Analyst was 

an effective tool for extracting 

pavement features. 

With respect to gravel features, Feature 

Analyst performed poorly.  The dataset 

for gravel features (both NAIP and 

Pictometry) closely mirrors the 

pavement dataset.  In other words 

Feature Analyst had a difficult time 

distinguishing gravel from pavement 

features.  Addition of a texture band did 

not improve the accuracy of detecting 

gravel features.  Overall the NAIP 

derived gravel dataset overestimates the 

presence of gravel features while the 

Pictometry derived gravel dataset 

underestimates the amount of gravel 

features. 

4.3.2 Pavement and Gravel 

Features Accuracy Assessment 

An error matrix was produced to 

quantify the results of extracting fire 

barrier feature types using an automated 

method.  It can identify overall errors 

rates as well as error of commission and 

errors of omission.  For this study an 

error matrix was generated using 

methods described in Campbell (1996).  A total of 4 error matrices were produced to quantify 

how well Feature Analyst performed with different datasets: 3 band NAIP image, 4 band NAIP 

image, 3 band Pictometry image and 4 band Pictometry image (Table 13). 

 

Results show overall accuracy results are better using Pictometry (87-91%) imagery compared to 

the more coarse resolution of NAIP imagery (83%). However, closer inspection illustrates NAIP 

outperforms Pictometry for certain features.  For instance, NAIP has a much better user's 

accuracy for pavement features (57-66%) compared to Pictometry derived features (47-48%).  

Also, the producer's accuracy is better for NAIP for gravel features (49-52%) compared to 

Pictometry (21-23%).  A comparison between 3 and 4 band products (within the same image 

dataset) reveals minimal change in the user's and producer's accuracy.  Overall accuracy rates also 

show little variance but the kappa analysis is greatly improved when adding a texture band on the 

Pictometry dataset; no change was observed for NAIP.  Finally, the value K^ (kappa coefficient) 

is a measure to determine how the classification compares to a random assignment of points.  

Figure 29 Feature extraction using coarser NAIP 

imagery misclassified a vehicle and parking lot lines as 

pavement; Pictometry results corrected identified non-

pavement features. 
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Table 13 Error Matrix results from Feature Analyst 

CLASS Pavement Gravel Other
Row 

Total

Producer's 

Accuracy 

(%)

Errors of 

Ommission 

(%)

Pavement 88 107 37 232 37.93% 62.07%

Gravel 16 53 32 101 52.48% 47.52%

Other 49 278 2508 2835 88.47% 11.53%

Column 

Total
153 438 2577 3168

User's 

Accuracy     

(%)

57.52% 12.10% 97.32%

Overall 

Accuracy 

(%)

83.62%

Errors of 

Commission 

(%)

42.48% 87.90% 2.68% K^ 0.38
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SEGMENTED DATA

CLASS Pavement Gravel Other
Row 

Total

Producer's 

Accuracy 

(%)

Errors of 

Ommission 

(%)

Pavement 92 97 33 222 41.44% 58.56%

Gravel 24 23 62 109 21.10% 78.90%

Other 78 100 2672 2850 93.75% 6.25%

Column 

Total
194 220 2767 3181

User's 

Accuracy     

(%)

47.42% 10.45% 96.57%

Overall 

Accuracy 

(%)

87.61%

Errors of 

Commission 

(%)

52.58% 89.55% 3.43% K^ 0.42

SEGMENTED DATA

R
E
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E
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E
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CLASS Pavement Gravel Other
Row 

Total

Producer's 

Accuracy 

(%)

Errors of 

Ommission 

(%)

Pavement 87 110 38 235 37.02% 62.98%

Gravel 17 50 35 102 49.02% 50.98%

Other 27 304 2485 2816 88.25% 11.75%

Column 

Total
131 464 2558 3153

User's 

Accuracy     

(%)

66.41% 10.78% 97.15%

Overall 

Accuracy 

(%)

83.16%

Errors of 

Commission 

(%)

33.59% 89.22% 2.85% K^ 0.37

R
E
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E
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N
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A
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A

SEGMENTED DATA

CLASS Pavement Gravel Other
Row 

Total

Producer's 

Accuracy 

(%)

Errors of 

Ommission 

(%)

Pavement 87 93 38 218 39.91% 60.09%

Gravel 23 25 60 108 23.15% 76.85%

Other 69 97 2678 2844 94.16% 5.84%

Column 

Total
179 215 2776 3170

User's 

Accuracy     

(%)

48.60% 11.63% 96.47%

Overall 

Accuracy 

(%)

91.36%

Errors of 

Commission 

(%)

51.40% 88.37% 3.53% K^ 0.58

SEGMENTED DATA
R

E
F

E
R

E
N
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 D
A

T
A

a) NAIP 3 band b) Pictometry 3 band 

c) NAIP 4 band d) Pictometry 4 band 

With the exception of the Pictometry 4 band results, overall kappa values are less than 0.5. In 

other words, the classification of fire barrier features is no better than randomly assigning a value 

to each point. 

 

 

 

 

 

 

4.4 Discussion 

Our study showed mixed results using Feature Analyst to extract fire barrier feature types.  

Datasets derived from imagery using a coarser resolution (1 meter) produced results that matched, 

or even exceeded, a higher resolution dataset (<1 foot).  High resolution imagery was more 

accurate classifying features that align correctly with matching features in the imagery but overall 

errors of commission and omission were higher with Pictometry datasets because of a greater 

number of misclassified polygons.  In terms of overall performance a higher resolution image 

produces better accuracy results and thus is preferred but if costs are a concern a user should see 

comparable results using a free dataset, such as NAIP imagery, for their analysis.  Feature 

extraction was done using the reflectance band (3 color bands) along with the addition of a 4th 

band, texture.  Adding a texture band had a negligible effect at best when discerning pavement or 

gravel feature types.  We expected greater improvements in accuracy but both visual inspection 

of the dataset and analysis of the error matrix failed to show noticeable results.   

When comparing results between feature types the overall accuracy was better for pavement 

features versus results from gravel feature extraction.  Results of gravel features often overlapped 

or coincided with pavement features (Figure 30) and Feature Analyst had a difficult time 

distinguishing actual gravel features from either pavement or other bare earth feature types.  

Within the study area there are many bare earth features that closely resemble pavement and 
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Figure 30 Results for pavement and gravel features.  

Note the high degree of overlapping between the 

two. 

gravel feature types.  For instance, plowed 

agricultural fields and other exposed dirt 

features are similar in both reflectance and 

texture values.  Despite having a representative 

training sample of gravel features their spectral 

makeup was too generic for Feature Analyst to 

produce a quality dataset.  This lead to both 

high commission and omission error rates.  

Meanwhile, pavement features tend to be 

darker in color thus making them more 

distinguishable from other features types.   

 

The final product for this exercise was to 

produce a single fire barrier feature layer 

from an assortment of non-combustible 

feature types.  Feature extraction software 

seemed to be capable, in addition to being 

efficient, as a means of classifying 

pavement and gravel features from features 

at risk from fires (structures or vegetation).  

The difficultly lies in distinguishing 

between gravel, pavement, and bare earth 

features because of similar spectral and 

texture compositions.  High quality data 

and refinements in feature extraction 

software will help to reduce error rates when 

classifying these feature types.  

 

4.5 Conclusions 

 
Section 4 of this report discussed extracting fire barrier feature types from imagery using an 

automated approach versus the traditional method of manually classifying features.  Our 

experiments show that Feature Analyst software can be effectively used to extract certain feature 

types.  Comparisons between different sources of imagery revealed minimal differences in a 

visual comparison and slightly more accurate results, in terms of accuracy rates, using NAIP 

imagery.  In terms of extracting feature types, the addition of a texture band did not reduce the 

degree of misclassification errors.  Overall error matrix results were exceeded what was expected 

but the software was effective at identifying pavement feature types and discerning combustible 

from non-combustible features.  However, quality control is necessary to ensure the end product 

meets accuracy requirements. 
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Section 5.0 GIS to WFDS Data Transfer 

The application of the above described geospatial technologies resulted in the creation of 

geospatial data sets describing the properties and spatial extent of man-made and natural features 

to be input to WFDS.  Methods, however, to transfer this geospatial data to a format suitable to be 

used as input files for WFDS were required.  As the WFDS inputs were derived using a GIS it 

was determined that a GIS would be a logical choice as a platform to base the development of a 

software application to facilitate the transfer of the WFDS inputs stored in GIS format to WFDS 

input files.  A GIS was also a logical choice because of the potential for writing WFDS model 

outputs back to the GIS for subsequent spatial analysis of WFDS model runs.   

Initially a free GIS viewer developed by ESRI called ArcReader was modified to create an 

application to allow for the transfer of GIS data to WFDS input files.  This simple application 

shown in Figure  allowed users to view the WFDS inputs in GIS format along with ancillary data 

such as aerial imagery.  Users could navigate around the data and enter a point in the map 

window representing the bottom left extent of the WFDS input file to be created.  The resultant 

form that appeared allowed users to specify the extent and other characteristics for the WFDS 

input file to be created.  This application required the use of licensed ESRI software to create the 

files used for the application and had a number of limitations including a 2 gigabyte size limit for 

the GIS database representing the WFDS inputs.  This application was used as a stop-gap 

measure to provide NIST personnel with a simple to use interface to create small WFDS input 

files from the GIS data sets created for this project. 

As the project progressed a more sophisticated application was required to allow for creation of 

WFDS input files of any size.  This application was again built off of the ESRI GIS platform and 

required users to have an authorized license of this software.  In addition to the development of 

the software application, a 

custom spatial database schema 

termed a geodatabase was 

developed to allow for the 

consistent storage of WFDS 

inputs in GIS format.  This can 

facilitate data transfer amongst 

researchers and the consistent 

creation of WFDS inputs.  The 

software application was termed 

GEOWFDS and takes raster and 

vector GIS data with associated 

tabular data and creates WFDS 

inputs files over a user specified 

extent.  In addition, GEOWFDS 

facilitates the linking of WFDS 

model run information, output to 

thermocouples contained in the 

WFDS input file, back to the GIS 

for further analysis.  Finally, 

GEOWFDS allows for the inputting of distinct vertical layers of vegetation as well as vegetation 

as points as described in section 3.0.  Deriving vegetation as vertical layers or height bins might 

be a more robust method of deriving the 3D structure of vegetation from LiDAR data compared 

to extracting tree stem locations, in some circumstances.   

 

Figure 31 Initial application to create WFDS input files from 

GIS inputs. 
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A user manual was developed by McNamara Consulting, Inc. detailing all of the functionality of 

the GEOWFDS program.  In addition, tutorials were developed demonstrating the proper usage 

of GEOWFDS with both high and coarse resolution data sets.  The user manual, tutorial and 

example data can be downloaded at: 

http://www.mcnamara-consulting.com/Default.aspx?Page=Software/GEOWFDS.html      
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Section 6.0 Recommendations 

The use of geospatial technologies for derivation of inputs to WFDS is likely the only practical 

means of obtaining these inputs over any significant area.  Whether WFDS inputs are derived 

using manual GPS surveys, manual photogrammetric techniques or completely automatic 

extractions from remote sensing data, the use of WFDS in understanding fire behavior in the WUI 

can be enhanced through the use of geospatial technologies.  The use of information systems for 

generating inputs to FDS has been occurring for sometime (e.g. DXF2FDS and PyroSim).  The 

WFDS-GIS linkage created for this grant extends this use to GIS to allow for further exploitation 

of geospatial data sets that are becoming more prevalent in the WUI.  While this project is the 

first known assessment of deriving inputs for WFDS, it touches upon only a few aspects of 

deriving these inputs and does not examine some WFDS inputs such as terrain and the material 

properties of vegetation.  Additionally, only a few methods of deriving the WFDS inputs have 

been examined and other methods could hold promise for more efficient and effective creation of 

WFDS inputs.  Finally, the actual level of accuracy and precision required for WFDS inputs 

remains unanswered.  This section provides recommendations for future research related to the 

use of geospatial technologies with WFDS.    

 

Terrain is a key input to WFDS and future studies could focus on ascertaining the importance of 

the following items related to deriving terrain information for WFDS: 

• Assessing the resolution required to produce valid WFDS model outputs. 

• Determining the importance of creating digital terrain models (DTM)
8
 from DEMs. 

• Interpolation and conversion methods used in creating the input DEM and converting to 

WFDS input data structures. 

Assessments involving the resolution required to produce valid WFDS runs could aid in cost 

effectiveness of creating WFDS terrain inputs where coarser resolution inputs would be cheaper 

to create and more readily available.  Creating DTMs that incorporate sharp geographic features 

like ridgelines and other topographic features could be important to producing valid WFDS 

model outputs.  For instance, it is common practice when using DEMs for hydrologic modeling to 

ensure the resultant DTM does not contain spurious sinks or spikes that interfere with the proper 

modeling of water flow across the landscape.  The importance of ensuring these sinks and spikes
9
 

are not present in DEMs used for creating WFDS inputs is not known by the authors.  Finally, 

various interpolation routines used to create the DEMs could be superior to others.  This question 

is being actively studied as related to creating DEMs from LiDAR data.    

This study also did not examine the extraction of the material properties of vegetation including 

the derivation of crown bulk density from LiDAR data.  The extraction of this type of information 

is also being studied extensively in the literature (e.g. Skowronski et al. 2007).  As with many 

other inputs the effectiveness of the use of LiDAR data in deriving this WFDS input largely 

depends on the level of accuracy and precision required.  Nonetheless, the potential that LiDAR 

has demonstrated in deriving the crown bulk density of vegetation is demonstrated by the 

availability of open source tools capable of deriving this information from LiDAR data (e.g. 

United States Forest Service Canopy Fuel Estimator).   

                                                 
8
 A DTM incorporates features that represent sharp breaks in the landscape such as ridgelines that might be 

smoothed or lost when creating a DEM. 
9
 The DEMs created for this study where checked for any large-scale anomalies.  
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6.1 Building Extraction 

The use of LiDAR data and multi-spectral imagery for the extraction of the 3D structure of 

buildings in the WUI showed great promise.  The derivation of the 3D structure of buildings from 

high-resolution remotely sensed data can be achieved with reasonable accuracy using automated 

techniques.  The extraction of these inputs with extremely high accuracy is also feasible when 

manual intervention by experienced specialists occurs.  It is recommended that future studies on 

extracting building information inputs for WFDS focus on the following items: 

• Assessing the resolution required to produce valid WFDS outputs. 

• Ascertaining the effectiveness of using multi-spectral data from other portions of the 

electromagnetic spectrum, including infra-red data and hyper-spectral data. 

• Automatic extraction of the material properties of buildings from remotely sensed data. 

Coarser resolution inputs to WFDS could be cheaper and easier to obtain.  Extracting the 3D 

structure of buildings from coarser resolution LiDAR data than what was used in this study, 

however, could result in the need for more manual intervention to produce accurate results.  The 

use of other types of multi-spectral data will likely increase the accuracy of automatic building 

extractions due to infra-red and hyper-spectral data being better able to distinguish vegetation 

from man-made features compared to color data.  Finally, the use of remotely sensed data for 

extracting the material properties of buildings could greatly reduce the costs of deriving WFDS 

inputs.   

This study used material properties of buildings derived from ground surveys as described in 

section 1.2.1.  These ground surveys are time and labor intensive.  WFDS inputs for material 

properties of buildings come from the NFPA form 1144a.  Technically, roof properties can only 

be determined by on the ground surveys because the categories depend on how the roof was 

constructed internally.  Nonetheless, the availability of using oblique imagery for determining 

building siding material could be possible and alleviate ground survey costs.  Additionally, the 

use of remotely sensed data for determining certain roof properties such as distinguishing 

between asphalt, tile or wood shingle roof types could be possible and also reduce ground survey 

costs.      

6.2 Vegetation Extraction 

The use of LiDAR for extracting tree stem locations showed promise for even-aged stand of trees 

in open environments.  The LiDAR tree extraction results where not as promising for sub-

dominant trees.  Additionally, this study did not examine extraction of other types of vegetation 

such as trees and shrubs.  As such it is recommended that future studies on extracting vegetation 

information inputs for WFDS focus on the following items: 

• Assessing the resolution required to produce valid WFDS outputs. 

• Using remotely sensed data for deriving the material properties of vegetation (e.g. crown 

bulk density). 

• Extracting vegetation as 3D rectilinear elements. 

As with all other WFDS inputs, obtaining these with coarser resolution remotely sensed data 

could help to reduce costs.  The use of LiDAR with other types of remotely sensed imagery for 

the derivation of the material properties of vegetation such as crown bulk density is important for 

deriving WFDS inputs.  Finally, it is recommended to examine voxel based approaches to 

extracting vegetation.  These approaches are likely required to extract certain types of vegetation 

such as shrubs and could prove simpler then precise tree stem extractions. 
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6.3 Fire Barrier Extraction 

Overall, the use of an automated method for extracting fire barrier feature types showed 

promise.  Feature extraction software was able to successfully identify fire barriers from 

combustible features.  However, when it came to identifying pavement features from 

gravel features the rates of error were larger than desired.  It is recommended that future 

studies on an automated method of extracting fire barrier feature types focus on the following 

items: 

• Inspect methods to smooth features resulting in less jagged edges. 

• Time efficient way for editing/cleaning results (i.e., eliminating 'donut holes' appearing in 

the middle of a feature. 

In addition, an assessment extracting features using an infrared/near infrared band may is 

recommended to see if error rates are reduced when distinguishing between specific feature types.  

2009 NAIP imagery has just been recently released.  It consists of a fourth, infrared band, that 

would make this analysis possible. 

6.4 WFDS-GIS Linkage 

The development of the linkage between WFDS and a GIS was required to facilitate the transfer 

of information from GIS data sets to a format capable of being used by WFDS.  The presented 

application represents a first step in that direction.  It is recommended that future work related to 

the development of the WFDS-GIS linkage focus on the following items: 

• Incorporating the ability to create WFDS inputs of wind from GIS data sets representing 

wind vectors. 

• Transferring data directly from the industry standard LAS LiDAR format to WFDS input 

files. 

• Reading WFDS model outputs back to the GIS for further spatial analysis. 

The current version of GEOWFDS does not facilitate the incorporation of wind vectors, which 

are often times an important component of understanding fire behavior.  Allowing the direct 

transfer of information stored in the LiDAR point cloud, or LAS file, to WFDS could reduce data 

processing needs and better facilitate the transfer of vegetation as voxels to WFDS input files.  

Finally, the ability to read information contained in WFDS output files back to a GIS could allow 

for the exploiting of the spatial analysis capabilities inherent in GIS and might better help in 

understanding fire behavior. 
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This document describes the functionality contained in the GIS LiDAR Tools application. 



 

 

Disclaimer 
 

GIS Light Intensity Detection and Ranging (LiDAR) Tools version 1.0 is a free 

distribution software application for processing LiDAR data. GIS LiDAR Tools was not 

developed as commercial-grade software. The authors, the Coeur d’Alene Tribe and 

McNamara Consulting, are not responsible for any misuse of the package, for the 

accuracy of the results, and for any consequences of running the software. In addition, 

although we have attempted to locate and eliminate programming errors
10

 that might 

hamper proper use of this software package, no software can be deemed truly "bug-free." 

Therefore, we make no guarantees; either expressed or implied, about the software's 

reliability, and cannot be held responsible for any damages incurred to the user as a result 

of using this software. 
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Executive Summary 
 

These tools contain functionality to view, process, and analyze LiDAR data.  The current 

implementation of these tools will only work with LiDAR data in LAS version 1.0.  The 

functionality of the tools contained within this software is described below.  These tools 

were developed as a research effort to explore methods of deriving inputs to the WFDS 

from remotely sensed LiDAR data in conjunction with multispectral and other ancillary 

GIS data.  The tools described herein are not necessarily designed for processing LiDAR 

data over large areas but for smaller sized projects in certain locales they have proved 

beneficial for filtering LiDAR building points and extracting tree stem locations.  They 

have also failed in some circumstances and have generally not been tested on LiDAR 

datasets with large point densities.  Nonetheless, these tools help demonstrate the 

potential of processing LiDAR data in a GIS environment.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Requirements 
 

The filtering tools contained within this software require an Environmental Systems 

Research Institute (ESRI) ArcInfo license as well as an ESRI Spatial Analyst License.  

The windows based LiDAR 3-D data viewer, which allows for viewing of LiDAR data in 

a 3-D environment as well as some export and tiling functionality, does not require any 

ESRI licenses.  These tools are memory intensive, particularly when coupled with ESRI 

software so a machine with lots of memory would help in using these tools.   
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1.0 ArcGIS Based Tools 
 

1.1 Getting Started 

 

The ArcGIS based tools are activated, after installation, by adding the LiDARTools 

toolbar to your ArcMap document.  After installation this can be accomplished by right 

clicking on a grey area in your ArcMap document and selecting the LiDARTools item.  

This will bring up a toolbar as shown below. 

 

 
 

All of the tools within the toolbar are disabled until you load a valid LAS file.  Loading 

the LAS file is accomplished by selecting the “Load LAS File Version 1.0” item from the 

“Load LAS File” menu item under the LiDAR Tools menu as shown below. 

 

 
 

If the selected file is a valid LAS version 1.0 file the LAS file should be loaded into 

memory and the ArcMap map window will zoom to the extent of the LAS file.  It is 

possible that the LAS file might need to be subset due to size and memory limitations.  

See the “Windows Based Tools” section of the document for instructions on sub-setting 

LAS files.  Once the LAS file is loaded the various tools and menu items contained 

within the LiDAR tools toolbar should become enabled as shown below. 

 

 
 

The various tools contained within the LiDARTools application can be run on the entire 

loaded LAS file or on a subset.  Tools run on the entire loaded LAS file are accessed 

through the “LiDAR Tools” menu while tools run on subsets of the LAS file are accessed 

using the command buttons, with the exception of the save icon, which saves the entire 

loaded LAS file, and the W/T icon, which will open up the windows based tools. 

 

 

 

 

 



 

 

 

2.0 LIDAR FILTERS 
 

2.1 Building Filter 

 

The LiDAR building filter attempts to classify LiDAR points representing laser returns 

from structures.   Building points are classified using the approach of fitting planes to the 

3-D point cloud of LiDAR data as described in other research (Wang and Tseng, 2004; 

Tovari and Pfeifer. 2005; and Verma et al.,) with additional custom segmentation 

algorithms incorporated as described below.  The LiDAR building filter changes the 

classification value of most LiDAR points.  To account for this there is a tool in the 

windows based tools that allows users to select two LAS files (e.g. the original LAS file 

and the same LAS file classified for building points and saved to a new file) and set the 

points not classified as buildings back to their original classification. 

 

Before the plane fitting algorithm is employed an optional initial segmentation of the 

LiDAR points is employed by considering the relationship between the first and last point, 

or return, in a particular laser pulse and the same first return and ground elevation as 

determined by an input bare earth digital elevation model.  The distance between the first 

and last return in a particular laser pulse is determined as well as the distance between the 

same first return and the ground elevation, as portrayed in the input bare earth DEM, for 

which this first return falls.  If the difference between these two distances is greater than a 

threshold, representing the minimum building height as input by the user, all returns in 

the particular laser pulse are classified as not being a building with the exception of the 

last return, which could be a building covered by vegetation.  This initial segmentation 

takes advantage of the fact that a LiDAR first return pulse when hitting dense vegetation, 

will, in some cases, not have a last return which hits the ground.  Before utilizing the 

above algorithm the input LAS file must be run through a command line executable.  

This executable is found in the installation folder and is called LAS.exe.  Make sure that 

neither ArcGIS nor the “Windows Based Tools” are running when running this command 

line utility.  The syntax for this utility is <LAS LASIN LASOUT> where LASIN is the 

input LAS file and LASOUT is the output LAS file.  

 

Another optional segmentation algorithm employed uses a vegetation mask grid where 

1’s represent vegetated pixels.  This segmentation algorithm classifies all those LiDAR 

first return points, falling on vegetated pixels in the input vegetation mask, as non-

building points.  The final segmentation algorithm employed before running the plane 

fitting algorithm removes points based on minimum and maximum height values input by 

the user. 

 

After the above segmentations are run the plane fitting algorithm is employed, which 

iterates through each point in the point cloud not removed in the above algorithms.  For 



 

each iteration, an initial window is fit around the particular point and an equation of a 

plane is fit to the points within this window.  The slope between the initial point and each 

other point in the window is evaluated and only those points with a slope less than a 

threshold, representing the maximum slope of a building roof, are included.  A plane is 

than fit to these points and the sum of squared residuals is calculated for the fitted plane.  

If the fitted plane is a “good” fit based on the sum of squared residuals the window is 

initially expanded in all directions.  Outliers are removed based on a threshold, which 

represents the Z distance of each point to the fitted plane.  If no new points are added, no 

segmentation occurs and the next point in the iteration is considered.  If new points are 

added the direction in which these points occur is recorded.  A new plane is fit to the 

points which are not removed above.  The window is expanded again, only in the 

direction for which new points are added as shown in figure 1 and the process continues 

until no new points are added.  Through the implementation of this algorithm each planar 

surface, not representing the ground surface, in the loaded point cloud is classified as a 

building. 

 

 

Figure 28  Directional window example portraying expansion in only two directions. 

 

The building filter would typically be run first on the entire loaded LAS file, which can 

be accomplished by selecting the “LiDAR Building Filter” command under the “LiDAR 

Filters” menu item in the “LiDAR Tools” menu as shown below. 

 



 

 
 

After running the filter on the entire file there is typically some cleanup required and the 

filter can be run on selected locations by clicking on the “Classify Building Points in 

Selected Extent” button as shown below and drawing a rectangle around the extent the 

user wishes to run the building filter.  Parameters can be changed to classify missed 

building points or remove points erroneously classified as a building. 

 

 
 

Either of the methods shown above will bring up the form shown below. 

 



 

 
 

Each parameter in the above form is described below. 

 

• Select the Bare Earth Grid:  This is a bare earth digital elevation model 

encompassing the extent of the loaded LAS file.  Generally, this input grid should 

have an integer cell size and unexpected results might occur if this is not the case. 

• Use Vegetation Mask:  This checkbox would be checked if there is a binary 

vegetation grid covering the extent of the loaded LAS file where vegetated pixels 

would have a value of 1.  If this checkbox is checked a vegetation grid must be 

input in the combo box below the check box.  Vegetated pixels in this grid should 

have a pixel value of 1.  As with the bare earth grid this grid should have an 

integer cell size. 



 

• Running Thinning Algorithm (Vegetated Areas):  This check box indicates if 

the user would like to run the thinning algorithm described above that utilizes the 

LiDAR pulse grouping.  This thinning algorithm would be run in areas of high 

vegetation.  This thinning algorithm would generally not be run in an urban area 

with tall buildings and little vegetation.  In addition, this thinning algorithm might 

erroneously remove building edge points of multi-storied buildings.  The LAS.exe 

should be run on the input LAS file if using this algorithm.   

• Exclude Points with a Scan Angle Greater Than:  This check box, if checked, 

allows users to enter a scan angle in the associated text box.  Points with an 

absolute value for the scan angle greater than the user input value will not be 

considered. 

• Enter Minimum Building Height:  This would be the minimum height expected 

for a building.  This would be determined by subtracting the height value of a bare 

earth DEM pixel from the height value of a particular LiDAR point occurring on 

that pixel.  Any LiDAR points that are below the input value would not be 

classified as a building point.  This value would be in the units of the loaded LAS 

file height or Z values. 

•  Enter Maximum Building Height:  This would be the maximum height 

expected for a building.  This would be determined by subtracting the height 

value of a bare earth DEM pixel from the height value of a particular LiDAR 

point occurring on that pixel.  Any LiDAR points that are above the input value 

would not be classified as a building point.  This value would be in the units of 

the loaded LAS file height or Z values. 

• Enter Moving Window Size:  This is the size of the moving window fit around 

each LiDAR point.  The value represents ½ of the length of each side of the 

moving window (e.g., an input value of 2 would result in a moving window of 4 

X 4).  Initially, users can enter a value about the size of the point spacing of the 

input LAS file and increase or decrease from there based on results.  This value 

would be in the units of the loaded LAS file’s X and Y values. 

• Enter Predicted Height Threshold:  This is the value used to remove outliers in 

the fitted plane.  As described above outliers are removed based on a threshold, 

which represents the Z distance of each point to the fitted plane.  This threshold is 

input in this text box.  A good starting value would be slightly larger than the 

vertical accuracy of the input LAS file.  This value would be in the units of the 

LiDAR height values. 

• Enter Slope Threshold:  As described above, the slope between the initial point 

and each other point in the window is evaluated and only those points with a slope 

less than this input value, representing the maximum slope of a building roof, are 

included. 

• Enter Number of Points Required for Plane:  This input parameter determines 

the number of points required for a plane.  Fitting an equation of a plane requires 

at least three points.  In a LiDAR point cloud, however, buildings would typically 

be represented by more than three points.  This input value would, consequently 

never be lower than three and typically greater than 5.  This parameter can be 

adjusted where building points might be of a lower density due to being 

surrounded by vegetation or other factors.  Adjusting this parameter along with 



 

the moving window size can help classify missed building points.  Examine a 

typical building and see how many points are found in the selected moving 

window size.  A value somewhat less than this would be a good place to start.   

• Enter % Cleanup:  This slider cleans up missed building points in a brute force 

manner.  For each building point not filtered out by the initial thinning algorithms 

and not classified as a building a moving window is fit around the particular point.  

Where the moving window is a cube with dimensions equal to the user input 

moving window size.  All of the points within this cube are examined.  If the 

percentage of points classified as buildings, within this cube, is greater than the 

cleanup value the particular point under consideration is classified as a building. 

 

2.2 Statistical Filters 

 

Statistical filters employ a moving window around each LiDAR point and change either 

height or intensity values for each point in the LiDAR point cloud to the value of the 

statistical measure for the points in the window.  Points can be excluded based on a 

distance from the ground as portrayed in the input bare earth DEM or all the points can 

be used.  These filters can be used to create interesting measures of the LiDAR data.  

These filters can only be run on the entire point data set.  Running a statistical filter on 

the entire loaded LAS file is accomplished by selecting the “LiDAR Statistical Filter” 

command under the “LiDAR Filters” menu item in the “LiDAR Tools” menu as shown 

below.   

 
 

Clicking on the above command button will bring up the form shown below. 

 



 

 
 

Each parameter in the above form is described below. 

 

• Field To Filter:  This is the field for which the statistical filter will be applied.  

This is either the height field or the intensity field in the loaded LAS file. 

• Statistic Type:  This is the statistical measure applied to each LiDAR point based 

on height or intensity values in the surrounding window.  Available statistical 

measures are:  mean, median, maximum, minimum, standard deviation and 

variance.  The chosen statistical measure is applied to the points in the window 

and the particular point in the iteration is set to the value of the statistical measure. 

• Exclude Points By Height Threshold:  This check box, if checked, will require 

the user to enter a bare earth DEM and a minimum height to exclude.  Points with 

a value below this minimum height, representing the height value of the particular 



 

point minus the bare earth DEM pixel value for which the point falls, will not be 

included in the statistical measure calculation. 

• Select the Bare Earth Grid:  This is the input bare earth DEM encompassing the 

extent of the loaded LAS file. 

• Minimum Height to Exclude:  This is the minimum height to exclude where 

points with a value below this minimum height will not be included in the 

statistical measure calculation. 

• Use Rectangle Filter:  If this check box is checked the moving window will be a 

rectangle with the height and width equal to the user input values in the text boxes 

below this check box. 

o Height:  The height, or length in the Y direction, of the moving window. 

o Width:  The width, or length in the X direction of the moving window. 

• Use Circle Filter:  If this check box is checked the moving window will be a 

circle with a radius equal to the user input value in the text below this check box. 

o Radius:  The radius of the circular moving window. 

 

3.0 FORESTRY TOOLS 
 

3.1 LiDAR Tree Stem Location 

 

The LiDAR Tree Stem Location tools attempt to identify tree stem locations with 

associated attributes of tree height, crown width, crown base height and deciduous versus 

conifer trees (leaf-off data only).  The Tree Stem Location tool works in association with 

the building filter in that points that were classified as buildings using the building filter 

are not included in the extraction of tree stem locations.  Unlike the building filter, 

however, the resulting LAS file is not meant to be saved or utilized for different purposes, 

generally speaking.  This is because many of the attributes in the resulting LAS file are 

altered.  Certain attributes are used to store results of crown width, crown base height and 

other intermediate derivatives during the processing to save memory.  Consequently, only 

the resulting text file should be used for further analysis.   

 

Before the identification of tree stem locations begins an initial thinning algorithm is 

employed to help remove pole features such as those shown in Figure 2.  Sometimes, 

particularly at the edge of scan lines pole features such as tree trunks or telephone poles 

will have LiDAR returns.  It is beneficial to remove these points as they are sometimes 

incorrectly returned as trees.  The initial thinning algorithm looks for points with similar 

horizontal coordinates and a large range in height variations and removes these points 

from consideration for tree stem locations. 

 

The approach used in identifying tree stem locations uses a user input allometric 

relationship between crown width and tree height where tree height is the independent 

variable and crown width is the dependent variable.  Using this input relationship local 

maximum are identified in the point cloud of LiDAR data by fitting a moving circular 

window of variable size to each point in the LiDAR point cloud.  This approach was 



 

mainly derived from work conducted by Popescu and Kini (2004).  The identification of 

local maximum proceeds by iterating through each point in the LiDAR data, which is 

above a user defined threshold (minimum tree height) from the interpolated ground 

surface (input bare earth DEM).  If the point in the iteration is the highest point in the 

search window it is flagged as a tree top.  In order to filter out high points, which 

represent pole features such as power line poles, the number of points below the 

identified local maximum point is recorded and if this number of points is below the user 

input threshold the search window is expanded by 33% (Personal Communication, Eric 

Rowell).  If new points are added such that the total number is greater than the threshold 

the point is flagged as a tree top.  This is an advantage of using the point data directly 

compared to the canopy height model (CHM), which cannot determine points beneath the 

identified local maximum.  Once the potential tree top locations have been identified the 

derivation of crown diameter begins.   

 

 

Figure 29  Laser returns from a telephone pole. 

 

The approach for determining crown width uses an input CHM.  As described in Popescu 

and Kini (2004) performing a median filter on this CHM might help improve results.  

While the use of a CHM was derived from work conducted by Popescu and Kini (2004) 

the approach for determining crown width in LiDAR tools is different.  For each 

identified potential tree top point a traverse along the crown profile in all 8 cardinal 

directions is conducted.  Each value in the CHM is recorded along the traverse and if the 

next value of the CHM is greater than the previous value or if the value of the CHM is 



 

less than the user input minimum tree height the location is marked.  If this occurs a 

consecutive threshold number of times (see description for "Canopy Radius Search 

Length" input parameter) the initially flagged value is determined to be the end of canopy 

point for the particular direction of the traverse.  The difference between the flagged 

values in the north and south direction, or the east and west direction are calculated.  In 

addition, the CHM profiles are also traversed in the Southeast/Northwest and 

Northeast/Southwest directions and the crown widths in these directions are calculated as 

above.  These 4 crown width values are averaged to determine the crown width for the 

tree.  This value is divided by 2 to create the crown radius for the tree.  This algorithm 

will sometimes result in a large overestimate of crown width. This occurs when the 

traverse of the canopy profile extends into another trees canopy while continuing to 

decrease in height.  Each tree is checked to see if its crown encompasses other trees to 

adjust for this error.  If 4 or more trees are encompassed within the crown of a particular 

tree, the crown radius in the particular direction of the encompassed tree is adjusted to be 

the midpoint between the original tree and the encompassed tree. 

 

In addition to the above, a method to remove the edge of canopy or mid canopy points 

incorrectly extracted as trees has been developed.  Due to the complex nature of tree 

canopies a branch or portion of the canopy, which spikes above the rest of the canopy for 

the particular tree under consideration, is often identified as a local maximum and 

incorrectly identified as a tree.  An attempt has been made to identify these points 

concurrent to measuring the crown width of the tree.  This is accomplished by recording 

the value of the CHM for the particular point identified as a potential tree top location 

during the traverse of the CHM profile.  For the next four values of the CHM in the 

traverse it is determined if the majority of these values are greater than the initial CHM 

value.  If this condition is met the particular direction of the traverse is flagged.  The user 

can enter the number of times this condition is not met for the potential point to be 

recorded as a tree stem location as described in the "Minimum Number of Correct 

Canopy Profiles" parameter below. 

 

The algorithm used to determine crown base height is similar to that described by 

Holmgren and Persson (2004) where all laser points below a particular flagged tree top 

point and within the identified crown width are grouped into 0.5m height bins.  Each bin 

is categorized as 0 or 1 where bins with a 0 value have less than 1% of the total number 

of non-ground laser points within all the bins and all others have a 1 value (Holmgren and 

Persson, 2004).  The crown base height was then determined as the distance from ground 

of the lowest laser data point above the highest 0 classified bin found.  Some 

modifications are made to the above described algorithm.  The first modification is a 

result of tree crown width not always being consistent in all directions.  Grouping all 

points below the flagged tree top point and within the crown width could, consequently, 

result in incorrect estimates of crown base height.  To account for this the location below 

flagged tree top points is divided into four quadrants and the average crown radii for each 

particular quadrant is used to determine the laser points within that quadrant.  In addition, 

instead of using the lowest laser data point above the highest 0 classified bin found, the 

bins are searched for a continuous occurrence, for a threshold number of times, of 0 value 

bins.  When this occurs the lowest laser point in the next 1 value bin, after the occurrence 



 

of the 0 value bins, is marked as the crown base height.  This step is conducted to attempt 

to alleviate the influence of understory vegetation. 

 

Finally, the discussed tree extraction algorithm utilizes the LiDAR intensity data to 

differentiate between conifer trees and deciduous trees.  For each point in the LiDAR 

data, a measure of the signal strength of the returning laser pulse is recorded as the 

intensity value, ranging between 0 and 255.  The surface from which the laser pulse is 

reflecting off of will cause variations of the intensity values, which have been shown to 

be useful in differentiating between conifer and deciduous species (McGaughey and 

Andersen, 2005).  This distinction in intensity values between conifer and deciduous trees 

would likely only occur for LiDAR data collected during leaf-off conditions.  It is 

unlikely that the distinction would be as apparent with data collected during leaf-on 

conditions.  Also, different environments might require different calibrations to 

distinguish between conifer and deciduous trees and this can be accomplished as 

described below. 

   

Running the tree filter is accomplished after loading the LAS file.  When trying to extract 

trees in an urban or residential setting containing structures it is recommended to run the 

building filter before running the tree filter.  The input CHM should than be created from 

the LiDAR returns not classified as buildings.  The tree stem extraction tool can be run 

on the entire loaded LAS file by selecting the "LiDAR Tree Stem Location" tool in the 

"Forestry Tools" menu item under the "LiDAR Tools" menu as shown below. 

 

 
 

Alternatively, the tree stem extraction tool can be run on a user defined extent by 

selecting the "Extract Tree Stem Locations in Selected Extent" button as shown below 

and drawing a rectangle to define the extent. 

 

 
 

Either method will bring up the form shown below. 

 



 

 
 

Each parameter in the above form is described below. 

 

• Select Bare Earth Grid:  This is a bare earth digital elevation model 

encompassing the extent of the loaded LAS file.  Generally, this input grid should 

have an integer cell size and unexpected results might occur if this is not the case. 

• Select Canopy Height Grid:  This is a canopy height model encompassing the 

extent of the loaded LAS file.  If the area of interest contains buildings better 



 

results might occur if the canopy height grid is derived using returns with building 

points filtered out.  In addition, as mentioned above, running the canopy height 

grid through a median filter might help remove noise from the resulting tree stem 

locations.  It is also recommended to use the maximum height value for the point 

in each pixel instead of interpolating all of the first return points.  Finally, it is 

recommended to derive the canopy height model at a lower resolution than would 

typically be used for deriving other raster products from the same data such as a 

bare earth DEM.  This helps identify subtleties in the surface model to distinguish 

trees that are close together. This could be at least half the typical resolution and 

probably as much as a quarter.  The smaller the cell size of the input CHM the 

smaller the size of the loaded LAS file that can be processed.  Generally, an input 

CHM with a cell size of 0.5m can be run on about 1 square kilometer of data at 

about a 1 meter post-spacing. 

• Shrink Search Radius if No Tree Found:  Checking this search check box will 

result in a shrinking of the search radius by 33% if no tree is found for the 

particular point under consideration in the first search.  This parameter would 

generally be checked for areas that contain trees that are very close together.  This 

is included to make the search more dynamic in an attempt to account for trees 

with different relationships between tree height and crown width. 

• Crown Width (CW) Allometric Relationship:  Three values can be entered here 

representing the coefficients of a third degree polynomial equation to predict tree 

crown width from tree height.  The use of a third degree polynomial is 

recommended in Popescu and Kini (2004).  The default equation used comes 

from Tiede et al. (2005).  Users can use equations from the literature or derive 

their own from field data. 

• Enter Minimum Tree Height:  The minimum height required for a point to be a 

tree.  This would be in the same units as the height values for the loaded LAS file. 

• Enter Minimum Crown Width:  LiDAR points with a derived crown width 

lower than this number will not be returned as tree top points.  This would be in 

the same units as the horizontal coordinates of the loaded LAS file and is meant 

as a mechanism to filter out smaller trees and potentially pole features. 

• Enter Maximum Crown Width:  This parameter is used as stopping criteria in 

the crown width derivation.  This would be in the same units as the horizontal 

coordinates of the load LAS file.  If the traverse along the canopy height model 

exceeds this value the crown radius, in the respective direction, would be set to 

this value. A known limitation of this algorithm is that it sometimes over 

estimates crown width.  This overestimation occurs when the traverse of the 

canopy height profile goes into another tree or vegetative canopy while elevations 

continue to decrease.  This variable ensures the traverse of the canopy height 

profile does not continue beyond what should be expected. 

• Enter Median Intensity Value for Deciduous Trees:  LiDAR intensity data 

collected in leaf-off has shown potential for distinguishing between conifer and 

deciduous trees.  The median value entered here is used to distinguish conifer 

versus deciduous trees.  A group of points, representing a particular tree, whose 

median value is below this threshold will be classified as a deciduous tree, 

otherwise it will be classified as a conifer tree.  This tool will output the median 



 

values for trees in the resulting text file.  This can be used to help calibrate which 

value to use for the median. 

• Enter Canopy Radius Search Length:  This value is used as a threshold to 

determine the distance used for a continuous rise in the CHM to determine the end 

of canopy point for an individual tree.  The user enters this as a length in LAS 

horizontal units and this is converted to pixels of the input canopy height model.  

A good starting value would be slightly larger than the post spacing of the input 

LAS file. 

• Enter Minimum Number of Correct Canopy Profiles (1-8):  This parameter 

will help control the number of stem locations returned where the lower the 

number the more tree points returned.  As described above, for each traverse in 

the canopy height profile it is recorded if the canopy rises directly from the 

flagged tree top point.  An ideal tree would always have the canopy height 

decrease in all eight directions.  Under certain circumstances, such as a tall tree 

next to a smaller tree, the canopy height model might decrease in one or two of 

the directions.  Consequently, a good starting number might be 6 or 7.  If too 

many points are being returned this number can be raised. 

• Enter Minimum Number of Points Required For A Tree:  This parameter 

represents the number of points below a particular point flagged as a tree top plus 

the tree top point.  At least one point is required but a higher number can be used 

to filter out certain features such as telephone poles. 

• Output Text File:  The output text file where the tree stem location attributes will 

be stored.  This is a comma delimited text file that contains the following 

attributes. 

� X:   the x coordinate of the flagged tree top point in horizontal units of the 

LAS file from which the output text file was produced.. 

� Y:  the y coordinate of the flagged tree top point in horizontal units of the 

LAS file from which the output text file was produced.. 

� Z:  the original height value in the LAS file from which the output text file 

was produced. 

� Hgt:  the height above ground of the tree top point. 

� CR:  the crown radius of the tree in horizontal units of the LAS file from 

which the output text file was produced. 

� CBH:  The crown base height of the tree top point in vertical units of the LAS 

file from which the output text file was produced. 

� Genus:  The genus of the tree:  deciduous, conifer or unclassified. 

� IntMin:  The minimum intensity value of the points found within the derived 

crown base height and crown width of the respective tree top point. 

� IntMax:  The maximum intensity value of the points found within the derived 

crown base height and crown width of the respective tree top point. 

� IntAvg:  The average intensity value of the points found within the derived 

crown base height and crown width of the respective tree top point. 

� IntMed:  The median intensity value of the points found within the derived 

crown base height and crown width of the respective tree top point.   

� NorthCR:  The crown radius of the respective tree top point in the north 

direction in horizontal units of the LAS file from which the output text file 



 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� SouthCR:  The crown radius of the respective tree top point in the south 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� EastCR:  The crown radius of the respective tree top point in the east 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� WestCR:  The crown radius of the respective tree top point in the east 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� NECR:  The crown radius of the respective tree top point in the northeast 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� SECR:  The crown radius of the respective tree top point in the southeast 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� SWCR:  The crown radius of the respective tree top point in the southwest 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� NWCR:  The crown radius of the respective tree top point in the northwest 

direction in horizontal units of the LAS file from which the output text file 

was produced.  A value of -99 indicates no crown radius was determined due 

to an initial rise in the canopy height model. 

� HitRatio:  This measure represents the percentage of points within a tree 

crown that do not hit the ground.  This measure could have potential for 

vegetation identification. 

� EndPnt:  Due to the fact that LiDAR tools only allows for loading of one 

LAS tile at a time there are sometimes trees along the edge of the tile that are 

returned where the traverse along the canopy profile did not extend beyond 

the tile.  This variable marks those trees with a value of "Yes" to indicate they 

are along the edge of the tile. 

 

 

 

 

 

 

 

 



 

4.0 BUILDING TOOLS 
 

4.1 Extract Building Footprints 

 

The “Extract Building Footprints” tool attempts to group LiDAR classified building 

points, representing a single building, and trace the boundary of these points.  The 

methodology for creating this boundary tracing functionality is described in Sampath and 

Shan (2007) with some modifications to the boundary tracing algorithm.   

 

The first step in this algorithm is to iterate through all of the LiDAR points classified as a 

building using the “Building Filter” and for each classified building point a moving 

window, whose size is input by the user, is fit around the point and all points classified as 

a building are grouped together.  For each of these points moving windows are fit of the 

same size as the original and all points are grouped into a single building.  This process 

continues until no new points are added. 

 

The next step uses a modified convex hull approach to trace the boundaries of these 

points (Sampath and Shan, 2007).  This algorithm starts with the left most point in a 

group of classified building points determined as described above.  From this point all the 

points within a separate moving window are determined.  Vectors are created between the 

initial point and all other points in the window.  These points are then sorted in increasing 

order of the clockwise angle from the vertical axis.  The point that corresponds to the 

least angle is chosen as the next point in the iteration.  This process continues until the 

boundary is determined with the exception that for each other point, except the first, the 

points are sorted in increasing order of the clockwise angle from the angle of the vector 

perpendicular to the first line drawn.  This helps to alleviate the non-uniformity of 

LiDAR spacing that might occur between scan lines. 

 

Running the “Extract Building Footprints” tools should be done after the building points 

have been classified.  As with most of the LiDAR Tools the footprint extraction can be 

run on the entire loaded LAS file or on a subset of the file.  Running the “Extract 

Building Footprints” tool on the entire file is accomplished by clicking the “Extract 

Building Footprints” command under the “Building Tools” menu item under the “LiDAR 

Tools” menu as shown below. 

 

 
 



 

Alternatively, the tool can be run on a subset of the loaded LAS file by clicking on the 

“Extract Building Footprints” command on the LiDAR Tools toolbar as shown below. 

 

 
 

Either of the procedures above will bring up the form shown below. 

 
 

Each of the parameters in the above form are described below. 

 

• Select Output Shapefile:  This is the path to the output line shapefile 

representing the traced building points.  This line shapefile can be converted to a 

polygon shapefile. 

• Enter Window Size for Grouping Adjacent Building Points:  This parameter 

represents the moving window size used to group adjacent classified building 

points.  A good starting value for this parameter would be about the post spacing 

of the input LAS file.  A moving window size that is too large will tend to group 

adjacent buildings into one and a moving window size that is too small will not 

properly trace the boundaries of the grouped points. 

• Enter the Window Size For Building Boundary Determinization:  This 

parameter represents the moving window size used in the boundary tracing.  This 

parameter should be set slightly larger than the point spacing of the input LAS file. 

• Enter Minimum Points Required for a Building:  This parameter determines 

the number of grouped points required for a building.  This parameter helps 

remove erroneously classified points along the edge of the scan line and other 

locations. 



 

 

4.2 Get Building Height Statistics 

 

The “Get Building Height Statistics” tool returns height statistics, for the user selected 

polygon, of the users choosing from the classified building points in the loaded LAS file.  

This tool will obtain statistics for any polygons containing some LiDAR classified 

building points (i.e., classification = 6).  This tool is run by selecting the "Extract 

Building Height Statistics" command under the "Building Tools" menu item in the 

"LiDAR Tools" menu as shown below. 

 

 
 

This will bring up the form shown below. 

 

 
 

 

Each of the parameters in the above form are described below. 

 



 

• Building Footprint Layer:  A polygon feature class for which statistical 

attributes will be added and/or calculated. 

• Bare Earth DEM:  An input bare earth DEM encompassing the loaded LAS file. 

• Building Height Statistics to Calculate:  This group of check boxes lists the 

statistical measures to calculate for each building polygon containing building 

points. 

o Count of Classified Points:  Checking this check box will add a field to 

the input feature class called "BldCount" and return the number of LiDAR 

points classified as a building for each polygon. 

o Mean Height Value:  Checking this check box will add a field to the 

input feature class called "BldMean" and return the average height of all 

points classified as a building for each polygon.. 

o Maximum Height Value:  Checking this check box will add a field to the 

input feature class called "BldMax" and return the maximum height value 

of all points classified as a building for each polygon. 

o Minimum Height Value:  Checking this check box will add a field to the 

input feature class called "BldMin" and return the minimum height value 

of all points classified as a building for each polygon. 

o Range in Height Values: Checking this check box will add a field to the 

input feature class called "BldRng" and return the range of height values 

of all points classified as a building for each polygon.   

o Standard Deviation of Height Values:  Checking this check box will add 

a field to the input feature class called "BldStDev" and return the standard 

deviation of height values of all points classified as a building for each 

polygon.   

 

If the attributes already exist in the input polygon feature class the values in the attribute 

will be overwritten. 

 

5.0 EXPORT and SAVE TOOLS 
 

5.1 Export to Text 

 

There are tools in the ArcMap toolbar to allow users to export certain spatial and attribute 

subsets of the LAS file to text files as well as sub-setting the loaded LAS file to a smaller 

extent.  Users can export the contents of the loaded LAS file to text by selecting the 

"Export Loaded LAS File to Text" command under the "Export LAS File" menu item in 

the "LiDAR Tools" menu as shown below.  

 



 

 
 

Optionally, a smaller subset of the loaded LAS file can be exported to a text file using the 

"Export to Text File in Select Extent" command as shown below. 

 
 

Performing either of the above operations will bring up the form shown below. 

 

 
 

In the form above users can select various return combinations and classification 

attributes to choose which points will be output to the entered text file. 

 



 

5.2 Subset LAS File 

 

The subset LAS file can be used to create a new LAS file comprising of LiDAR points 

within the user defined extent.  This functionality is accomplished by selecting the 

"Subset LAS File" command shown below. 

 

 
 

A rectangle can then be drawn to subset the LAS file in this user drawn extent. 

 

5.3 Save LAS File 

 

LAS files are loaded into memory so changes made are not automatically saved.  The 

"Save Loaded LAS File" command shown below will prompt the user for a location to 

save the LAS file.  This can be the same as the originally load LAS file. 

 

 
 

6.0 3-D VIEWER 
 

6.1 Activating the Viewer 

The 3-D viewer is mainly included to provide a quick means to view the results of the 

building classifications and cleanup the results.  The LiDAR Tools GIS toolbar contains 

functionality to view the point cloud of LiDAR data in a 3-D environment.  This is 

accomplished by clicking on the "LAS Viewer" command as shown below and drawing a 

rectangle around the extent of the portion of the LAS file to be viewed. 

 

 
 

This will bring up a form as shown below, portraying the point cloud of data. 

 



 

 
 

6.2 Viewer Navigation Controls 

 

Users can zoom, pan or orbit around this viewer using three icons contained on the form 

above and shown below. 

 

 
 

The buttons above, from left to right, are the zoom, pan and orbit buttons.  These 

navigation tools are activated by clicking on the tool of interest.  Within the viewer users 

can right click and drag the mouse to zoom, pan or navigate depending on the desired 

functionality.  These controls are very sensitive and can use some improvement in this 

regard.   

 

6.1 Viewer Symbology 

 

The symbology menu allows for alteration of point feature symbology by classification 

value or intensity.  The symbolization of classified building points is accomplished by 

selecting the "Classification Symbology" menu item under the "Symbology" menu as 

shown below.    



 

 

 
This will bring up the form shown below. 

 

 
 

Check boxes can be checked to determine the color for which to display points with the 

respective classification.  Any points with classification values not checked will be 

displayed in grey.  Colors can be changed by clicking on the color box next to the 

particular point classification.   

 



 

The symbolization of building points by intensity values is accomplished by selecting the 

"Intensity Symbology" menu item under the "Symbology" menu as shown below.  

 

 
 

This will bring up the form shown below. 

 

 
 

Two intensity colors are selected here and points will be symbolized with a color ramp, 

representing colors between the two selected colors, based on intensity value of the point.   

 

 

7.0 WINDOWS BASED TOOLS 
 

7.1 Activating the Windows Viewer 

 

There is a separate windows based utility include in the installation.  This utility is 

activated by going to the installation folder and clicking the "LIDARViewer.exe" to bring 

up the viewer shown below. 

 



 

 
 

As with the GIS tools the first task is typically to load an LAS file
11

.  This is 

accomplished by clicking the "Load LAS" command in the "Load LAS File" menu item 

under the "File" menu as shown below. 

 

 
 

7.2 Export Functionality 

 

After loading the LAS file the points are displayed in a 3-D environment.  The 

symbology can be changed in the same manner as with the GIS viewer.  As with the GIS 

Tools users can export to an LAS file or text file.  Additionally, this tool allows for 

                                                 
11
 This viewer can load a substantially bigger LAS file than the GIS tools. 



 

export to shapefile
12

 by clicking the "Export to Shapefile" command on the "Export" 

menu item in the "File" menu as shown below. 

 

    
 

 

7.3 Subset Functionality 

 

The load LAS file can be subset into quarters or a user defined extent using the "1/4s" or 

"User Defined Extent" commands in the "Subset" menu item found in the "File" menu as 

shown below. 

 

 
 

Additionally, a set of LAS files located in a single directory can be subset into quarters 

using the "Batch 1/4s" command shown above.  This tool, shown below, does not require 

any LAS file to be loaded. 
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 This functionality uses the ascii2shp utility provided by Jason Robert2. 



 

 

Two directories are selected where the first contains LAS files to subset and the second 

represents where the results of the subset will be stored.  Output files will be named the 

same as the input files with a "_#" appended to the end of the name where # represents 

integer values from 1 to 4.  Tile 1 will be the northwest tile, tile 2 will be the northeast 

tile, tile 3 will be the southwest tile and tile 4 will be the southeast tile. 

 

7.4 Reclassification Functionality 

   

Changing classification values for points altered by the building filter can be 

accomplished by clicking on the "By Files" command in the "Reclassify" menu item in 

the "File" menu as shown below. 

 

 
 

This will bring up the form shown below. 

 

 
 

The various text and list boxes are described below. 

 

• Input LAS File to Change:  This would be the LAS file altered by the building 

filter. 

• Original LAS File Containing Classification to Change To:  This would be the 

original LAS file from which the "Input LAS File to Change" was derived. 

• Classification Value That Will Not Be Changed:  This is the classification 

value for which points in the "Input LAS File to Change" will not be changed to 

the corresponding point in the "Original LAS File". 
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Trouble Shooting & Known Bugs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table 13  Known bugs associated with LiDAR Tools. 

Known Bug Error Work Around 

Grids named in the table 

of contents to something 

other than the dataset 

name (i.e., alias) will not 

work with LiDAR Tools. 

RasterDataset:get_Count Do not use aliases or 

rename grids in the table 

of contents. 

Loading a large LAS file 

could cause the 

application to hang. 

Application hangs. Subset the LAS file to 

smaller size using the 

Windows Tools or some 

other utility. 

During the “Partitioning 

Data” process in the 

building or tree filters 

you run out of memory 

System.OutOfMemoryException Close all other 

applications, remove 

some of the not need 

datasets from ArcMap, or 

subset the LAS file. 

When trying to use the 3-

D viewer in ArcMap you 

get an “Error Opening 

Form”. 

Attempted to Read or Write 

Protected Memory 

Close the application and 

all other applications and 

try again; subset the LAS 

file. 

 
    

 

 

 

 

 

 

 



 

APPENDIX C:  LIST OF RECORDED STRUCTURAL ATTRIBUTES 

 

 

 

 

 

 

 

 



 

 

Table 1:  Structure Database Field Collection Attributes 

 

Field Definition Source 

UNIV_CODE 

Universal code.  Universal 
numbering system describing 
building type for Cartographic 
Feature Files. United States Forest Service 

HOUSE_NUM 

House Number.  This is the 
number assigned by the 
respective county or city 
addressing systems Respective County 

ADDRESS Address for the structure. Respective County 

CROSSRD 

Cross road.  Last intersection 
between a county road and 
the road leading to the 
structure. Coeur d’Alene Tribe GIS 

BLDGTYPE 
Building Type.  Describes the 
type of building Coeur d’Alene Tribe GIS 

OCCUPANCY 
Describes the occupancy 
status of the building. Coeur d’Alene Tribe GIS 

COMMSTAT 

Commercial status.  Describes 
the commercial status of the 
building. Coeur d’Alene Tribe GIS 

BLDGMAT 

Building material.  Describes 
what the building material is 
like, particularly the siding, 
eaves, and deck. NFPA 1144 

ROOFING Describes the roofing type. NFPA 1144 

WATERSRC 

Describes what type of water 
source is available to 
firefighters. NFPA 1144 

ONSITEPRO 

On site provisions.  Indicates 
whether or not there are 
sprinklers inside the buildings.  
Most likely only to be found in 
public buildings. NFPA 1144 

INGEGR 

Ingress/Egress.  Describes 
how many roads can be used 
to get to the building. NFPA 1144 

RDWIDTH 

Road width.  Describes how 
wide the access road is to the 
structure. 

NFPA 1144 (Modified by 
Coeur d’Alene Tribe GIS) 

RDSURF 

Road surface.  Describes how 
wide the access road is to the 
structure. NFPA 1144 

FIREACCESS 

Describes how far from the 
access road the building is as 
well as the maneuverability of 
an emergency vehicle on the 
property. 

NFPA 1144 (Modified by 
Coeur d’Alene Tribe GIS) 

STREETSIGN 
Indicates if there is a 
reflectorized street sign NFPA 1144 



 

present. 

VEG 

Vegetation.  Describes both 
the vegetation type and 
density. NFPA 1144 

DEFSPACE 

Defensible space.  Describes 
how much available space 
there is for emergency crews 
to operate. NFPA 1144 

SLPSETBACK 
Slope setback.  Indicates how 
far away the 30% slope is. NFPA 1144 

GASELEC 

Gas and electric.  Describes 
where the gas and electricity 
are coming into the building. NFPA 1144 

BURNBAR 

Burn barrel.  Indicates whether 
a burn barrel exists on the 
property or not. Coeur d’Alene Tribe GIS 

FUELTANK 

Indicates whether or not fuel 
tanks exist on the property and 
if so, what kind. Coeur d’Alene Tribe GIS 

PHOTOID 

This field is used for internal 
management and is the 
number of the original image 
taken of the structure. Coeur d’Alene Tribe GIS 

ADDPOST 

This attribute describes if the 
address is posted on the 
structure. Coeur d’Alene Tribe GIS 

LOCKGATE 
This attribute describes if there 
is a locked gate present. Coeur d’Alene Tribe GIS 

COLLECTOR 
Name or initials of person 
collecting the data. Coeur d’Alene Tribe GIS 

DATE 
The date the structure was 
inventoried. Coeur d’Alene Tribe GIS 

COMMENT 

Any relevant information that 
would help distinguish the 
building or other pertinent 
information about the 
structure. Coeur d’Alene Tribe GIS 

 


